ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g GIF version

Theorem mapdom1g 6813
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g ((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))

Proof of Theorem mapdom1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 6711 . . . . . 6 Rel ≼
21brrelex2i 4648 . . . . 5 (𝐴𝐵𝐵 ∈ V)
3 domeng 6718 . . . . 5 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 14 . . . 4 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 175 . . 3 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 274 . 2 ((𝐴𝐵𝐶𝑉) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 108 . . . 4 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 6730 . . . . 5 (𝐶𝑉𝐶𝐶)
98adantl 275 . . . 4 ((𝐴𝐵𝐶𝑉) → 𝐶𝐶)
10 mapen 6812 . . . 4 ((𝐴𝑥𝐶𝐶) → (𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶))
117, 9, 10syl2anr 288 . . 3 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶))
122ad2antrr 480 . . . . 5 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
13 simprr 522 . . . . 5 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
14 mapss 6657 . . . . 5 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
1512, 13, 14syl2anc 409 . . . 4 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
16 fnmap 6621 . . . . . . 7 𝑚 Fn (V × V)
17 elex 2737 . . . . . . 7 (𝐶𝑉𝐶 ∈ V)
18 fnovex 5875 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵𝑚 𝐶) ∈ V)
1916, 2, 17, 18mp3an3an 1333 . . . . . 6 ((𝐴𝐵𝐶𝑉) → (𝐵𝑚 𝐶) ∈ V)
20 ssdomg 6744 . . . . . 6 ((𝐵𝑚 𝐶) ∈ V → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2119, 20syl 14 . . . . 5 ((𝐴𝐵𝐶𝑉) → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2221adantr 274 . . . 4 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2315, 22mpd 13 . . 3 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
24 endomtr 6756 . . 3 (((𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶) ∧ (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
2511, 23, 24syl2anc 409 . 2 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
266, 25exlimddv 1886 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1480  wcel 2136  Vcvv 2726  wss 3116   class class class wbr 3982   × cxp 4602   Fn wfn 5183  (class class class)co 5842  𝑚 cmap 6614  cen 6704  cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-en 6707  df-dom 6708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator