ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g GIF version

Theorem mapdom1g 6825
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g ((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))

Proof of Theorem mapdom1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 6723 . . . . . 6 Rel ≼
21brrelex2i 4655 . . . . 5 (𝐴𝐵𝐵 ∈ V)
3 domeng 6730 . . . . 5 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 14 . . . 4 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 175 . . 3 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 274 . 2 ((𝐴𝐵𝐶𝑉) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 108 . . . 4 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 6742 . . . . 5 (𝐶𝑉𝐶𝐶)
98adantl 275 . . . 4 ((𝐴𝐵𝐶𝑉) → 𝐶𝐶)
10 mapen 6824 . . . 4 ((𝐴𝑥𝐶𝐶) → (𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶))
117, 9, 10syl2anr 288 . . 3 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶))
122ad2antrr 485 . . . . 5 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
13 simprr 527 . . . . 5 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
14 mapss 6669 . . . . 5 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
1512, 13, 14syl2anc 409 . . . 4 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
16 fnmap 6633 . . . . . . 7 𝑚 Fn (V × V)
17 elex 2741 . . . . . . 7 (𝐶𝑉𝐶 ∈ V)
18 fnovex 5886 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵𝑚 𝐶) ∈ V)
1916, 2, 17, 18mp3an3an 1338 . . . . . 6 ((𝐴𝐵𝐶𝑉) → (𝐵𝑚 𝐶) ∈ V)
20 ssdomg 6756 . . . . . 6 ((𝐵𝑚 𝐶) ∈ V → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2119, 20syl 14 . . . . 5 ((𝐴𝐵𝐶𝑉) → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2221adantr 274 . . . 4 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → ((𝑥𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)))
2315, 22mpd 13 . . 3 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
24 endomtr 6768 . . 3 (((𝐴𝑚 𝐶) ≈ (𝑥𝑚 𝐶) ∧ (𝑥𝑚 𝐶) ≼ (𝐵𝑚 𝐶)) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
2511, 23, 24syl2anc 409 . 2 (((𝐴𝐵𝐶𝑉) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
266, 25exlimddv 1891 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1485  wcel 2141  Vcvv 2730  wss 3121   class class class wbr 3989   × cxp 4609   Fn wfn 5193  (class class class)co 5853  𝑚 cmap 6626  cen 6716  cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-en 6719  df-dom 6720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator