Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version |
Description: mp3an 1337 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 | ⊢ 𝜑 |
mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an2i | ⊢ (𝜓 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | mp3an1 1324 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: mapen 6836 mapxpen 6838 en2eleq 7184 nnledivrp 9735 xsubge0 9850 iccen 9975 frec2uzsucd 10369 seq3shft 10813 geolim2 11486 geoisum1c 11494 ntrivcvgap 11522 eflegeo 11675 sin01gt0 11735 cos01gt0 11736 gcdn0gt0 11944 uzwodc 12003 divgcdodd 12108 sqpweven 12140 2sqpwodd 12141 pythagtriplem4 12233 pythagtriplem11 12239 pythagtriplem12 12240 pythagtriplem13 12241 pythagtriplem14 12242 pcfac 12313 omctfn 12409 ssnnctlemct 12412 ressid 12490 topnvalg 12620 ismhm 12714 restbasg 13237 restco 13243 lmfval 13261 cnfval 13263 cnpval 13267 upxp 13341 uptx 13343 txrest 13345 xblm 13486 bdmet 13571 bdmopn 13573 reopnap 13607 cnopnap 13663 dvidlemap 13729 dvcj 13742 eflt 13765 logdivlti 13871 trilpolemisumle 14345 |
Copyright terms: Public domain | W3C validator |