| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| mp3an2i.1 | ⊢ 𝜑 | 
| mp3an2i.2 | ⊢ (𝜓 → 𝜒) | 
| mp3an2i.3 | ⊢ (𝜓 → 𝜃) | 
| mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| mp3an2i | ⊢ (𝜓 → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | mp3an1 1335 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | 
| 6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mapen 6907 mapxpen 6909 en2eleq 7262 nnledivrp 9841 xsubge0 9956 iccen 10081 fldiv4lem1div2uz2 10396 frec2uzsucd 10493 seqp1g 10558 seq3shft 11003 geolim2 11677 geoisum1c 11685 ntrivcvgap 11713 eflegeo 11866 sin01gt0 11927 cos01gt0 11928 3dvds 12029 gcdn0gt0 12145 uzwodc 12204 divgcdodd 12311 sqpweven 12343 2sqpwodd 12344 pythagtriplem4 12437 pythagtriplem11 12443 pythagtriplem12 12444 pythagtriplem13 12445 pythagtriplem14 12446 pcfac 12519 4sqlemffi 12565 omctfn 12660 ssnnctlemct 12663 topnvalg 12922 imasmulr 12952 imasaddfnlemg 12957 gsumsplit1r 13041 gsumprval 13042 ismhm 13093 mhmex 13094 gsumfzz 13127 scaffng 13865 lss1d 13939 zringinvg 14160 psrplusgg 14230 restbasg 14404 restco 14410 lmfval 14428 cnfval 14430 cnpval 14434 upxp 14508 uptx 14510 txrest 14512 xblm 14653 bdmet 14738 bdmopn 14740 reopnap 14782 cnopnap 14847 maxcncf 14851 mincncf 14852 dvidlemap 14927 dvcj 14945 plyval 14968 plysub 14989 eflt 15011 logdivlti 15117 perfectlem1 15235 perfectlem2 15236 gausslemma2dlem0i 15298 gausslemma2dlem4 15305 lgsquad2lem1 15322 lgsquad2lem2 15323 trilpolemisumle 15682 | 
| Copyright terms: Public domain | W3C validator |