Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version |
Description: mp3an 1327 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 | ⊢ 𝜑 |
mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an2i | ⊢ (𝜓 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | mp3an1 1314 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
6 | 1, 2, 5 | syl2anc 409 | 1 ⊢ (𝜓 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mapen 6812 mapxpen 6814 en2eleq 7151 nnledivrp 9702 xsubge0 9817 iccen 9942 frec2uzsucd 10336 seq3shft 10780 geolim2 11453 geoisum1c 11461 ntrivcvgap 11489 eflegeo 11642 sin01gt0 11702 cos01gt0 11703 gcdn0gt0 11911 uzwodc 11970 divgcdodd 12075 sqpweven 12107 2sqpwodd 12108 pythagtriplem4 12200 pythagtriplem11 12206 pythagtriplem12 12207 pythagtriplem13 12208 pythagtriplem14 12209 pcfac 12280 omctfn 12376 ssnnctlemct 12379 ressid 12456 topnvalg 12568 restbasg 12808 restco 12814 lmfval 12832 cnfval 12834 cnpval 12838 upxp 12912 uptx 12914 txrest 12916 xblm 13057 bdmet 13142 bdmopn 13144 reopnap 13178 cnopnap 13234 dvidlemap 13300 dvcj 13313 eflt 13336 logdivlti 13442 trilpolemisumle 13917 |
Copyright terms: Public domain | W3C validator |