| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version | ||
| Description: mp3an 1350 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an2i.1 | ⊢ 𝜑 |
| mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
| mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an2i | ⊢ (𝜓 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | mp3an1 1337 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| 6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mapen 6968 mapxpen 6970 en2eleq 7334 nnledivrp 9923 xsubge0 10038 iccen 10163 fldiv4lem1div2uz2 10486 frec2uzsucd 10583 seqp1g 10648 fnpfx 11168 seq3shft 11264 geolim2 11938 geoisum1c 11946 ntrivcvgap 11974 eflegeo 12127 sin01gt0 12188 cos01gt0 12189 3dvds 12290 gcdn0gt0 12414 uzwodc 12473 divgcdodd 12580 sqpweven 12612 2sqpwodd 12613 pythagtriplem4 12706 pythagtriplem11 12712 pythagtriplem12 12713 pythagtriplem13 12714 pythagtriplem14 12715 pcfac 12788 4sqlemffi 12834 omctfn 12929 ssnnctlemct 12932 topnvalg 13198 imasmulr 13256 imasaddfnlemg 13261 gsumsplit1r 13345 gsumprval 13346 ismhm 13408 mhmex 13409 gsumfzz 13442 prdsinvlem 13555 scaffng 14186 lss1d 14260 zringinvg 14481 psrplusgg 14555 restbasg 14755 restco 14761 lmfval 14779 cnfval 14781 cnpval 14785 upxp 14859 uptx 14861 txrest 14863 xblm 15004 bdmet 15089 bdmopn 15091 reopnap 15133 cnopnap 15198 maxcncf 15202 mincncf 15203 dvidlemap 15278 dvcj 15296 plyval 15319 plysub 15340 eflt 15362 logdivlti 15468 perfectlem1 15586 perfectlem2 15587 gausslemma2dlem0i 15649 gausslemma2dlem4 15656 lgsquad2lem1 15673 lgsquad2lem2 15674 trilpolemisumle 16179 |
| Copyright terms: Public domain | W3C validator |