| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version | ||
| Description: mp3an 1350 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an2i.1 | ⊢ 𝜑 |
| mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
| mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an2i | ⊢ (𝜓 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | mp3an1 1337 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| 6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mapen 6945 mapxpen 6947 en2eleq 7305 nnledivrp 9890 xsubge0 10005 iccen 10130 fldiv4lem1div2uz2 10451 frec2uzsucd 10548 seqp1g 10613 seq3shft 11182 geolim2 11856 geoisum1c 11864 ntrivcvgap 11892 eflegeo 12045 sin01gt0 12106 cos01gt0 12107 3dvds 12208 gcdn0gt0 12332 uzwodc 12391 divgcdodd 12498 sqpweven 12530 2sqpwodd 12531 pythagtriplem4 12624 pythagtriplem11 12630 pythagtriplem12 12631 pythagtriplem13 12632 pythagtriplem14 12633 pcfac 12706 4sqlemffi 12752 omctfn 12847 ssnnctlemct 12850 topnvalg 13116 imasmulr 13174 imasaddfnlemg 13179 gsumsplit1r 13263 gsumprval 13264 ismhm 13326 mhmex 13327 gsumfzz 13360 prdsinvlem 13473 scaffng 14104 lss1d 14178 zringinvg 14399 psrplusgg 14473 restbasg 14673 restco 14679 lmfval 14697 cnfval 14699 cnpval 14703 upxp 14777 uptx 14779 txrest 14781 xblm 14922 bdmet 15007 bdmopn 15009 reopnap 15051 cnopnap 15116 maxcncf 15120 mincncf 15121 dvidlemap 15196 dvcj 15214 plyval 15237 plysub 15258 eflt 15280 logdivlti 15386 perfectlem1 15504 perfectlem2 15505 gausslemma2dlem0i 15567 gausslemma2dlem4 15574 lgsquad2lem1 15591 lgsquad2lem2 15592 trilpolemisumle 16014 |
| Copyright terms: Public domain | W3C validator |