| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an2i.1 | ⊢ 𝜑 |
| mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
| mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an2i | ⊢ (𝜓 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | mp3an1 1335 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| 6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mapen 6916 mapxpen 6918 en2eleq 7274 nnledivrp 9858 xsubge0 9973 iccen 10098 fldiv4lem1div2uz2 10413 frec2uzsucd 10510 seqp1g 10575 seq3shft 11020 geolim2 11694 geoisum1c 11702 ntrivcvgap 11730 eflegeo 11883 sin01gt0 11944 cos01gt0 11945 3dvds 12046 gcdn0gt0 12170 uzwodc 12229 divgcdodd 12336 sqpweven 12368 2sqpwodd 12369 pythagtriplem4 12462 pythagtriplem11 12468 pythagtriplem12 12469 pythagtriplem13 12470 pythagtriplem14 12471 pcfac 12544 4sqlemffi 12590 omctfn 12685 ssnnctlemct 12688 topnvalg 12953 imasmulr 13011 imasaddfnlemg 13016 gsumsplit1r 13100 gsumprval 13101 ismhm 13163 mhmex 13164 gsumfzz 13197 prdsinvlem 13310 scaffng 13941 lss1d 14015 zringinvg 14236 psrplusgg 14306 restbasg 14488 restco 14494 lmfval 14512 cnfval 14514 cnpval 14518 upxp 14592 uptx 14594 txrest 14596 xblm 14737 bdmet 14822 bdmopn 14824 reopnap 14866 cnopnap 14931 maxcncf 14935 mincncf 14936 dvidlemap 15011 dvcj 15029 plyval 15052 plysub 15073 eflt 15095 logdivlti 15201 perfectlem1 15319 perfectlem2 15320 gausslemma2dlem0i 15382 gausslemma2dlem4 15389 lgsquad2lem1 15406 lgsquad2lem2 15407 trilpolemisumle 15769 |
| Copyright terms: Public domain | W3C validator |