| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | GIF version | ||
| Description: mp3an 1348 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an2i.1 | ⊢ 𝜑 |
| mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
| mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an2i | ⊢ (𝜓 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | mp3an1 1335 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| 6 | 1, 2, 5 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mapen 6916 mapxpen 6918 en2eleq 7276 nnledivrp 9860 xsubge0 9975 iccen 10100 fldiv4lem1div2uz2 10415 frec2uzsucd 10512 seqp1g 10577 seq3shft 11022 geolim2 11696 geoisum1c 11704 ntrivcvgap 11732 eflegeo 11885 sin01gt0 11946 cos01gt0 11947 3dvds 12048 gcdn0gt0 12172 uzwodc 12231 divgcdodd 12338 sqpweven 12370 2sqpwodd 12371 pythagtriplem4 12464 pythagtriplem11 12470 pythagtriplem12 12471 pythagtriplem13 12472 pythagtriplem14 12473 pcfac 12546 4sqlemffi 12592 omctfn 12687 ssnnctlemct 12690 topnvalg 12955 imasmulr 13013 imasaddfnlemg 13018 gsumsplit1r 13102 gsumprval 13103 ismhm 13165 mhmex 13166 gsumfzz 13199 prdsinvlem 13312 scaffng 13943 lss1d 14017 zringinvg 14238 psrplusgg 14312 restbasg 14512 restco 14518 lmfval 14536 cnfval 14538 cnpval 14542 upxp 14616 uptx 14618 txrest 14620 xblm 14761 bdmet 14846 bdmopn 14848 reopnap 14890 cnopnap 14955 maxcncf 14959 mincncf 14960 dvidlemap 15035 dvcj 15053 plyval 15076 plysub 15097 eflt 15119 logdivlti 15225 perfectlem1 15343 perfectlem2 15344 gausslemma2dlem0i 15406 gausslemma2dlem4 15413 lgsquad2lem1 15430 lgsquad2lem2 15431 trilpolemisumle 15795 |
| Copyright terms: Public domain | W3C validator |