| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincosq1eq | GIF version | ||
| Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincosq1eq | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire 15379 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 2 | 1 | recni 8119 | . . . . 5 ⊢ (π / 2) ∈ ℂ |
| 3 | mulcl 8087 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐴 · (π / 2)) ∈ ℂ) | |
| 4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (π / 2)) ∈ ℂ) |
| 5 | coshalfpim 15410 | . . . 4 ⊢ ((𝐴 · (π / 2)) ∈ ℂ → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) |
| 7 | 6 | 3ad2ant1 1021 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) |
| 8 | adddir 8098 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (π / 2) ∈ ℂ) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) | |
| 9 | 2, 8 | mp3an3 1339 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) |
| 10 | 9 | 3adant3 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) |
| 11 | oveq1 5974 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) = 1 → ((𝐴 + 𝐵) · (π / 2)) = (1 · (π / 2))) | |
| 12 | 2 | mullidi 8110 | . . . . . . 7 ⊢ (1 · (π / 2)) = (π / 2) |
| 13 | 11, 12 | eqtrdi 2256 | . . . . . 6 ⊢ ((𝐴 + 𝐵) = 1 → ((𝐴 + 𝐵) · (π / 2)) = (π / 2)) |
| 14 | 13 | 3ad2ant3 1023 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 + 𝐵) · (π / 2)) = (π / 2)) |
| 15 | 10, 14 | eqtr3d 2242 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2)) |
| 16 | mulcl 8087 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐵 · (π / 2)) ∈ ℂ) | |
| 17 | 2, 16 | mpan2 425 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵 · (π / 2)) ∈ ℂ) |
| 18 | subadd 8310 | . . . . . 6 ⊢ (((π / 2) ∈ ℂ ∧ (𝐴 · (π / 2)) ∈ ℂ ∧ (𝐵 · (π / 2)) ∈ ℂ) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) | |
| 19 | 2, 4, 17, 18 | mp3an3an 1356 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) |
| 20 | 19 | 3adant3 1020 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) |
| 21 | 15, 20 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2))) |
| 22 | 21 | fveq2d 5603 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (cos‘(𝐵 · (π / 2)))) |
| 23 | 7, 22 | eqtr3d 2242 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 1c1 7961 + caddc 7963 · cmul 7965 − cmin 8278 / cdiv 8780 2c2 9122 sincsin 12070 cosccos 12071 πcpi 12073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: sincos4thpi 15427 sincos6thpi 15429 |
| Copyright terms: Public domain | W3C validator |