Step | Hyp | Ref
| Expression |
1 | | restfn 12560 |
. . . . . 6
⊢
↾t Fn (V × V) |
2 | | elex 2737 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) |
3 | | elex 2737 |
. . . . . 6
⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) |
4 | | fnovex 5875 |
. . . . . 6
⊢ ((
↾t Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 ↾t 𝐴) ∈ V) |
5 | 1, 2, 3, 4 | mp3an3an 1333 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐵 ↾t 𝐴) ∈ V) |
6 | | eltg3 12697 |
. . . . 5
⊢ ((𝐵 ↾t 𝐴) ∈ V → (𝑥 ∈ (topGen‘(𝐵 ↾t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵 ↾t 𝐴) ∧ 𝑥 = ∪ 𝑦))) |
7 | 5, 6 | syl 14 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (topGen‘(𝐵 ↾t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵 ↾t 𝐴) ∧ 𝑥 = ∪ 𝑦))) |
8 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → 𝐵 ∈ 𝑉) |
9 | | funmpt 5226 |
. . . . . . . . . 10
⊢ Fun
(𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) |
10 | 9 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → Fun (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴))) |
11 | | restval 12562 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐵 ↾t 𝐴) = ran (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴))) |
12 | 11 | sseq2d 3172 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑦 ⊆ (𝐵 ↾t 𝐴) ↔ 𝑦 ⊆ ran (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)))) |
13 | 12 | biimpa 294 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → 𝑦 ⊆ ran (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴))) |
14 | | vex 2729 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
15 | 14 | inex1 4116 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ∈ V |
16 | 15 | rgenw 2521 |
. . . . . . . . . . 11
⊢
∀𝑥 ∈
𝐵 (𝑥 ∩ 𝐴) ∈ V |
17 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) |
18 | 17 | fnmpt 5314 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐵 (𝑥 ∩ 𝐴) ∈ V → (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) Fn 𝐵) |
19 | | fnima 5306 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) Fn 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝐵) = ran (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴))) |
20 | 16, 18, 19 | mp2b 8 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝐵) = ran (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) |
21 | 13, 20 | sseqtrrdi 3191 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → 𝑦 ⊆ ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝐵)) |
22 | | ssimaexg 5548 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ Fun (𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) ∧ 𝑦 ⊆ ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝐵)) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧))) |
23 | 8, 10, 21, 22 | syl3anc 1228 |
. . . . . . . 8
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧))) |
24 | | df-ima 4617 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) = ran ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) ↾ 𝑧) |
25 | | resmpt 4932 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) ↾ 𝑧) = (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴))) |
26 | 25 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) ↾ 𝑧) = (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴))) |
27 | 26 | rneqd 4833 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ran ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) ↾ 𝑧) = ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴))) |
28 | 24, 27 | syl5eq 2211 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) = ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴))) |
29 | 28 | unieqd 3800 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) = ∪ ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴))) |
30 | 15 | dfiun3 4863 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ 𝑧 (𝑥 ∩ 𝐴) = ∪ ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)) |
31 | 29, 30 | eqtr4di 2217 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) = ∪ 𝑥 ∈ 𝑧 (𝑥 ∩ 𝐴)) |
32 | | iunin1 3930 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑥 ∈ 𝑧 (𝑥 ∩ 𝐴) = (∪
𝑥 ∈ 𝑧 𝑥 ∩ 𝐴) |
33 | 31, 32 | eqtrdi 2215 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) = (∪
𝑥 ∈ 𝑧 𝑥 ∩ 𝐴)) |
34 | | tgvalex 12690 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
35 | 34 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (topGen‘𝐵) ∈ V) |
36 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝐴 ∈ 𝑊) |
37 | 36 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → 𝐴 ∈ 𝑊) |
38 | | uniiun 3919 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑥 ∈ 𝑧 𝑥 |
39 | | eltg3i 12696 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵) → ∪ 𝑧 ∈ (topGen‘𝐵)) |
40 | 38, 39 | eqeltrrid 2254 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵) → ∪
𝑥 ∈ 𝑧 𝑥 ∈ (topGen‘𝐵)) |
41 | 40 | adantlr 469 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
𝑥 ∈ 𝑧 𝑥 ∈ (topGen‘𝐵)) |
42 | | elrestr 12564 |
. . . . . . . . . . . . . 14
⊢
(((topGen‘𝐵)
∈ V ∧ 𝐴 ∈
𝑊 ∧ ∪ 𝑥 ∈ 𝑧 𝑥 ∈ (topGen‘𝐵)) → (∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴)) |
43 | 35, 37, 41, 42 | syl3anc 1228 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴)) |
44 | 33, 43 | eqeltrd 2243 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴)) |
45 | | unieq 3798 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) → ∪ 𝑦 = ∪
((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧)) |
46 | 45 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) → (∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ∪ ((𝑥
∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴))) |
47 | 44, 46 | syl5ibrcom 156 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧) → ∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
48 | 47 | expimpd 361 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝑧 ⊆ 𝐵 ∧ 𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧)) → ∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
49 | 48 | exlimdv 1807 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧)) → ∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
50 | 49 | adantr 274 |
. . . . . . . 8
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → (∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑦 = ((𝑥 ∈ 𝐵 ↦ (𝑥 ∩ 𝐴)) “ 𝑧)) → ∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
51 | 23, 50 | mpd 13 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → ∪ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)) |
52 | | eleq1 2229 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → (𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ∪ 𝑦
∈ ((topGen‘𝐵)
↾t 𝐴))) |
53 | 51, 52 | syl5ibrcom 156 |
. . . . . 6
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑦 ⊆ (𝐵 ↾t 𝐴)) → (𝑥 = ∪ 𝑦 → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
54 | 53 | expimpd 361 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝑦 ⊆ (𝐵 ↾t 𝐴) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
55 | 54 | exlimdv 1807 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦(𝑦 ⊆ (𝐵 ↾t 𝐴) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
56 | 7, 55 | sylbid 149 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (topGen‘(𝐵 ↾t 𝐴)) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴))) |
57 | 56 | ssrdv 3148 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) ⊆ ((topGen‘𝐵) ↾t 𝐴)) |
58 | | restval 12562 |
. . . 4
⊢
(((topGen‘𝐵)
∈ V ∧ 𝐴 ∈
𝑊) →
((topGen‘𝐵)
↾t 𝐴) =
ran (𝑤 ∈
(topGen‘𝐵) ↦
(𝑤 ∩ 𝐴))) |
59 | 34, 36, 58 | syl2an2r 585 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤 ∩ 𝐴))) |
60 | | eltg3 12697 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧))) |
61 | 60 | adantr 274 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧))) |
62 | 38 | ineq1i 3319 |
. . . . . . . . . . . 12
⊢ (∪ 𝑧
∩ 𝐴) = (∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴) |
63 | 62, 32 | eqtr4i 2189 |
. . . . . . . . . . 11
⊢ (∪ 𝑧
∩ 𝐴) = ∪ 𝑥 ∈ 𝑧 (𝑥 ∩ 𝐴) |
64 | | simplll 523 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑧) → 𝐵 ∈ 𝑉) |
65 | | simpllr 524 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑧) → 𝐴 ∈ 𝑊) |
66 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ 𝐵) |
67 | 66 | sselda 3142 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝐵) |
68 | | elrestr 12564 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
69 | 64, 65, 67, 68 | syl3anc 1228 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑧) → (𝑥 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
70 | 69 | fmpttd 5640 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)):𝑧⟶(𝐵 ↾t 𝐴)) |
71 | 70 | frnd 5347 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)) ⊆ (𝐵 ↾t 𝐴)) |
72 | | eltg3i 12696 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ↾t 𝐴) ∈ V ∧ ran (𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)) ⊆ (𝐵 ↾t 𝐴)) → ∪ ran
(𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)) ∈ (topGen‘(𝐵 ↾t 𝐴))) |
73 | 5, 71, 72 | syl2an2r 585 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪ ran
(𝑥 ∈ 𝑧 ↦ (𝑥 ∩ 𝐴)) ∈ (topGen‘(𝐵 ↾t 𝐴))) |
74 | 30, 73 | eqeltrid 2253 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → ∪
𝑥 ∈ 𝑧 (𝑥 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴))) |
75 | 63, 74 | eqeltrid 2253 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (∪ 𝑧 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴))) |
76 | | ineq1 3316 |
. . . . . . . . . . 11
⊢ (𝑤 = ∪
𝑧 → (𝑤 ∩ 𝐴) = (∪ 𝑧 ∩ 𝐴)) |
77 | 76 | eleq1d 2235 |
. . . . . . . . . 10
⊢ (𝑤 = ∪
𝑧 → ((𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)) ↔ (∪
𝑧 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)))) |
78 | 75, 77 | syl5ibrcom 156 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑧 ⊆ 𝐵) → (𝑤 = ∪ 𝑧 → (𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)))) |
79 | 78 | expimpd 361 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧) → (𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)))) |
80 | 79 | exlimdv 1807 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑧(𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧) → (𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)))) |
81 | 61, 80 | sylbid 149 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑤 ∈ (topGen‘𝐵) → (𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴)))) |
82 | 81 | imp 123 |
. . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑤 ∈ (topGen‘𝐵)) → (𝑤 ∩ 𝐴) ∈ (topGen‘(𝐵 ↾t 𝐴))) |
83 | 82 | fmpttd 5640 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤 ∩ 𝐴)):(topGen‘𝐵)⟶(topGen‘(𝐵 ↾t 𝐴))) |
84 | 83 | frnd 5347 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤 ∩ 𝐴)) ⊆ (topGen‘(𝐵 ↾t 𝐴))) |
85 | 59, 84 | eqsstrd 3178 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((topGen‘𝐵) ↾t 𝐴) ⊆ (topGen‘(𝐵 ↾t 𝐴))) |
86 | 57, 85 | eqssd 3159 |
1
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |