ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrpcl GIF version

Theorem xrminrpcl 11793
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
xrminrpcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+)

Proof of Theorem xrminrpcl
StepHypRef Expression
1 rpxr 9865 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
2 rpxr 9865 . . . 4 (𝐵 ∈ ℝ+𝐵 ∈ ℝ*)
3 xrminmax 11784 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
41, 2, 3syl2an 289 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5 rpre 9864 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
6 rexneg 10034 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
7 renegcl 8415 . . . . . . . . 9 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
86, 7eqeltrd 2306 . . . . . . . 8 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
95, 8syl 14 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝑒𝐴 ∈ ℝ)
10 rpre 9864 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
11 rexneg 10034 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
12 renegcl 8415 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
1311, 12eqeltrd 2306 . . . . . . . 8 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
1410, 13syl 14 . . . . . . 7 (𝐵 ∈ ℝ+ → -𝑒𝐵 ∈ ℝ)
15 xrmaxrecl 11774 . . . . . . 7 ((-𝑒𝐴 ∈ ℝ ∧ -𝑒𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ))
169, 14, 15syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ))
17 maxcl 11729 . . . . . . 7 ((-𝑒𝐴 ∈ ℝ ∧ -𝑒𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ) ∈ ℝ)
189, 14, 17syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ) ∈ ℝ)
1916, 18eqeltrd 2306 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ)
20 rexneg 10034 . . . . 5 (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
2119, 20syl 14 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
2219renegcld 8534 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ)
2321, 22eqeltrd 2306 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ)
244, 23eqeltrd 2306 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
25 rpgt0 9869 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
26 rpgt0 9869 . . . 4 (𝐵 ∈ ℝ+ → 0 < 𝐵)
2725, 26anim12i 338 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (0 < 𝐴 ∧ 0 < 𝐵))
28 0xr 8201 . . . 4 0 ∈ ℝ*
29 xrltmininf 11789 . . . 4 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < inf({𝐴, 𝐵}, ℝ*, < ) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
3028, 1, 2, 29mp3an3an 1377 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (0 < inf({𝐴, 𝐵}, ℝ*, < ) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
3127, 30mpbird 167 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < inf({𝐴, 𝐵}, ℝ*, < ))
3224, 31elrpd 9897 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cpr 3667   class class class wbr 4083  supcsup 7157  infcinf 7158  cr 8006  0cc0 8007  *cxr 8188   < clt 8189  -cneg 8326  +crp 9857  -𝑒cxne 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-xneg 9976  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  blin2  15114  xmettx  15192
  Copyright terms: Public domain W3C validator