Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrminrpcl | GIF version |
Description: The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.) |
Ref | Expression |
---|---|
xrminrpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 9618 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
2 | rpxr 9618 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ*) | |
3 | xrminmax 11228 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) | |
4 | 1, 2, 3 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) |
5 | rpre 9617 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
6 | rexneg 9787 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
7 | renegcl 8180 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
8 | 6, 7 | eqeltrd 2247 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) |
9 | 5, 8 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → -𝑒𝐴 ∈ ℝ) |
10 | rpre 9617 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
11 | rexneg 9787 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵) | |
12 | renegcl 8180 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
13 | 11, 12 | eqeltrd 2247 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ) |
14 | 10, 13 | syl 14 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → -𝑒𝐵 ∈ ℝ) |
15 | xrmaxrecl 11218 | . . . . . . 7 ⊢ ((-𝑒𝐴 ∈ ℝ ∧ -𝑒𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < )) | |
16 | 9, 14, 15 | syl2an 287 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < )) |
17 | maxcl 11174 | . . . . . . 7 ⊢ ((-𝑒𝐴 ∈ ℝ ∧ -𝑒𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ) ∈ ℝ) | |
18 | 9, 14, 17 | syl2an 287 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ, < ) ∈ ℝ) |
19 | 16, 18 | eqeltrd 2247 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ) |
20 | rexneg 9787 | . . . . 5 ⊢ (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) | |
21 | 19, 20 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) |
22 | 19 | renegcld 8299 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → -sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ) |
23 | 21, 22 | eqeltrd 2247 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ) |
24 | 4, 23 | eqeltrd 2247 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ) |
25 | rpgt0 9622 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
26 | rpgt0 9622 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → 0 < 𝐵) | |
27 | 25, 26 | anim12i 336 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (0 < 𝐴 ∧ 0 < 𝐵)) |
28 | 0xr 7966 | . . . 4 ⊢ 0 ∈ ℝ* | |
29 | xrltmininf 11233 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 < inf({𝐴, 𝐵}, ℝ*, < ) ↔ (0 < 𝐴 ∧ 0 < 𝐵))) | |
30 | 28, 1, 2, 29 | mp3an3an 1338 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (0 < inf({𝐴, 𝐵}, ℝ*, < ) ↔ (0 < 𝐴 ∧ 0 < 𝐵))) |
31 | 27, 30 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < inf({𝐴, 𝐵}, ℝ*, < )) |
32 | 24, 31 | elrpd 9650 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cpr 3584 class class class wbr 3989 supcsup 6959 infcinf 6960 ℝcr 7773 0cc0 7774 ℝ*cxr 7953 < clt 7954 -cneg 8091 ℝ+crp 9610 -𝑒cxne 9726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: blin2 13226 xmettx 13304 |
Copyright terms: Public domain | W3C validator |