![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an2ani | GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 | ⊢ 𝜑 |
mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | mp3an3an 1343 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
6 | 5 | anabss5 578 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: tfr1onlemubacc 6349 tfrcllemubacc 6362 mappsrprg 7805 plusffng 12789 lspsnel 13508 metrest 14091 2lgsoddprmlem2 14539 |
Copyright terms: Public domain | W3C validator |