Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2ani | GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 | ⊢ 𝜑 |
mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | mp3an3an 1338 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
6 | 5 | anabss5 573 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: tfr1onlemubacc 6325 tfrcllemubacc 6338 mappsrprg 7766 plusffng 12619 metrest 13300 |
Copyright terms: Public domain | W3C validator |