ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcn GIF version

Theorem txmetcn 14687
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐾,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑋,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑌,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑍,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐷,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐸,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐿,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
21mopntopon 14611 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
43mopntopon 14611 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
5 txtopon 14430 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2an 289 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
763adant3 1019 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 txmetcnp.4 . . . . 5 𝐿 = (MetOpen‘𝐸)
98mopntopon 14611 . . . 4 (𝐸 ∈ (∞Met‘𝑍) → 𝐿 ∈ (TopOn‘𝑍))
1093ad2ant3 1022 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐿 ∈ (TopOn‘𝑍))
11 cncnp 14398 . . 3 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
127, 10, 11syl2anc 411 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
13 fveq2 5554 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
1413eleq2d 2263 . . . . 5 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩)))
1514ralxp 4805 . . . 4 (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
16 simplr 528 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹:(𝑋 × 𝑌)⟶𝑍)
171, 3, 8txmetcnp 14686 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1817adantlr 477 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1916, 18mpbirand 441 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
20192ralbidva 2516 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2115, 20bitrid 192 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2221pm5.32da 452 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2312, 22bitrd 188 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cop 3621   class class class wbr 4029   × cxp 4657  wf 5250  cfv 5254  (class class class)co 5918   < clt 8054  +crp 9719  ∞Metcxmet 14032  MetOpencmopn 14037  TopOnctopon 14178   Cn ccn 14353   CnP ccnp 14354   ×t ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-cnp 14357  df-tx 14421
This theorem is referenced by:  addcncntoplem  14719
  Copyright terms: Public domain W3C validator