ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcn GIF version

Theorem txmetcn 15024
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐾,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑋,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑌,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑍,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐷,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐸,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐿,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
21mopntopon 14948 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
43mopntopon 14948 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
5 txtopon 14767 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2an 289 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
763adant3 1020 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 txmetcnp.4 . . . . 5 𝐿 = (MetOpen‘𝐸)
98mopntopon 14948 . . . 4 (𝐸 ∈ (∞Met‘𝑍) → 𝐿 ∈ (TopOn‘𝑍))
1093ad2ant3 1023 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐿 ∈ (TopOn‘𝑍))
11 cncnp 14735 . . 3 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
127, 10, 11syl2anc 411 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
13 fveq2 5578 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
1413eleq2d 2275 . . . . 5 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩)))
1514ralxp 4822 . . . 4 (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
16 simplr 528 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹:(𝑋 × 𝑌)⟶𝑍)
171, 3, 8txmetcnp 15023 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1817adantlr 477 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1916, 18mpbirand 441 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
20192ralbidva 2528 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2115, 20bitrid 192 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2221pm5.32da 452 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2312, 22bitrd 188 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  wral 2484  wrex 2485  cop 3636   class class class wbr 4045   × cxp 4674  wf 5268  cfv 5272  (class class class)co 5946   < clt 8109  +crp 9777  ∞Metcxmet 14331  MetOpencmopn 14336  TopOnctopon 14515   Cn ccn 14690   CnP ccnp 14691   ×t ctx 14757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-cn 14693  df-cnp 14694  df-tx 14758
This theorem is referenced by:  addcncntoplem  15066
  Copyright terms: Public domain W3C validator