| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txmetcn | GIF version | ||
| Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| metcn.2 | ⊢ 𝐽 = (MetOpen‘𝐶) |
| metcn.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
| txmetcnp.4 | ⊢ 𝐿 = (MetOpen‘𝐸) |
| Ref | Expression |
|---|---|
| txmetcn | ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 2 | 1 | mopntopon 14948 | . . . . 5 ⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | metcn.4 | . . . . . 6 ⊢ 𝐾 = (MetOpen‘𝐷) | |
| 4 | 3 | mopntopon 14948 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
| 5 | txtopon 14767 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 6 | 2, 4, 5 | syl2an 289 | . . . 4 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | 6 | 3adant3 1020 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 8 | txmetcnp.4 | . . . . 5 ⊢ 𝐿 = (MetOpen‘𝐸) | |
| 9 | 8 | mopntopon 14948 | . . . 4 ⊢ (𝐸 ∈ (∞Met‘𝑍) → 𝐿 ∈ (TopOn‘𝑍)) |
| 10 | 9 | 3ad2ant3 1023 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐿 ∈ (TopOn‘𝑍)) |
| 11 | cncnp 14735 | . . 3 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)))) | |
| 12 | 7, 10, 11 | syl2anc 411 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)))) |
| 13 | fveq2 5578 | . . . . . 6 ⊢ (𝑡 = 〈𝑥, 𝑦〉 → (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) = (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉)) | |
| 14 | 13 | eleq2d 2275 | . . . . 5 ⊢ (𝑡 = 〈𝑥, 𝑦〉 → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉))) |
| 15 | 14 | ralxp 4822 | . . . 4 ⊢ (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉)) |
| 16 | simplr 528 | . . . . . 6 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 𝐹:(𝑋 × 𝑌)⟶𝑍) | |
| 17 | 1, 3, 8 | txmetcnp 15023 | . . . . . . 7 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| 18 | 17 | adantlr 477 | . . . . . 6 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| 19 | 16, 18 | mpbirand 441 | . . . . 5 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉) ↔ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
| 20 | 19 | 2ralbidva 2528 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝑥, 𝑦〉) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
| 21 | 15, 20 | bitrid 192 | . . 3 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
| 22 | 21 | pm5.32da 452 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| 23 | 12, 22 | bitrd 188 | 1 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 〈cop 3636 class class class wbr 4045 × cxp 4674 ⟶wf 5268 ‘cfv 5272 (class class class)co 5946 < clt 8109 ℝ+crp 9777 ∞Metcxmet 14331 MetOpencmopn 14336 TopOnctopon 14515 Cn ccn 14690 CnP ccnp 14691 ×t ctx 14757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-map 6739 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-cn 14693 df-cnp 14694 df-tx 14758 |
| This theorem is referenced by: addcncntoplem 15066 |
| Copyright terms: Public domain | W3C validator |