| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsr2d | GIF version | ||
| Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvdsrvald.2 | ⊢ (𝜑 → ∥ = (∥r‘𝑅)) |
| dvdsrvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| dvdsrvald.3 | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvdsr2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dvdsr2d | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | dvdsrvald.1 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 3 | dvdsrvald.2 | . . 3 ⊢ (𝜑 → ∥ = (∥r‘𝑅)) | |
| 4 | dvdsrvald.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 5 | dvdsrvald.3 | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 6 | 2, 3, 4, 5 | dvdsrd 13906 | . 2 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| 7 | 1, 6 | mpbirand 441 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 .rcmulr 12960 SRingcsrg 13775 ∥rcdsr 13898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-mgp 13733 df-srg 13776 df-dvdsr 13901 |
| This theorem is referenced by: dvdsr01 13916 dvdsr02 13917 unitgrp 13928 rhmdvdsr 13987 rspsn 14346 znunit 14471 |
| Copyright terms: Public domain | W3C validator |