![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsr2d | GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsrvald.1 | โข (๐ โ ๐ต = (Baseโ๐ )) |
dvdsrvald.2 | โข (๐ โ โฅ = (โฅrโ๐ )) |
dvdsrvald.r | โข (๐ โ ๐ โ SRing) |
dvdsrvald.3 | โข (๐ โ ยท = (.rโ๐ )) |
dvdsr2d.x | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
dvdsr2d | โข (๐ โ (๐ โฅ ๐ โ โ๐ง โ ๐ต (๐ง ยท ๐) = ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr2d.x | . 2 โข (๐ โ ๐ โ ๐ต) | |
2 | dvdsrvald.1 | . . 3 โข (๐ โ ๐ต = (Baseโ๐ )) | |
3 | dvdsrvald.2 | . . 3 โข (๐ โ โฅ = (โฅrโ๐ )) | |
4 | dvdsrvald.r | . . 3 โข (๐ โ ๐ โ SRing) | |
5 | dvdsrvald.3 | . . 3 โข (๐ โ ยท = (.rโ๐ )) | |
6 | 2, 3, 4, 5 | dvdsrd 13261 | . 2 โข (๐ โ (๐ โฅ ๐ โ (๐ โ ๐ต โง โ๐ง โ ๐ต (๐ง ยท ๐) = ๐))) |
7 | 1, 6 | mpbirand 441 | 1 โข (๐ โ (๐ โฅ ๐ โ โ๐ง โ ๐ต (๐ง ยท ๐) = ๐)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โ wb 105 = wceq 1353 โ wcel 2148 โwrex 2456 class class class wbr 4003 โcfv 5216 (class class class)co 5874 Basecbs 12461 .rcmulr 12536 SRingcsrg 13144 โฅrcdsr 13253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-ltxr 7996 df-inn 8919 df-2 8977 df-3 8978 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-plusg 12548 df-mulr 12549 df-0g 12706 df-mgm 12774 df-sgrp 12807 df-mnd 12817 df-mgp 13129 df-srg 13145 df-dvdsr 13256 |
This theorem is referenced by: dvdsr01 13271 dvdsr02 13272 unitgrp 13283 |
Copyright terms: Public domain | W3C validator |