Step | Hyp | Ref
| Expression |
1 | | fprodss.1 |
. . 3
β’ (π β π΄ β π΅) |
2 | | sseq2 3179 |
. . . . 5
β’ (π΅ = β
β (π΄ β π΅ β π΄ β β
)) |
3 | | ss0 3463 |
. . . . 5
β’ (π΄ β β
β π΄ = β
) |
4 | 2, 3 | syl6bi 163 |
. . . 4
β’ (π΅ = β
β (π΄ β π΅ β π΄ = β
)) |
5 | | prodeq1 11560 |
. . . . . 6
β’ (π΄ = β
β βπ β π΄ πΆ = βπ β β
πΆ) |
6 | | prodeq1 11560 |
. . . . . . 7
β’ (π΅ = β
β βπ β π΅ πΆ = βπ β β
πΆ) |
7 | 6 | eqcomd 2183 |
. . . . . 6
β’ (π΅ = β
β βπ β β
πΆ = βπ β π΅ πΆ) |
8 | 5, 7 | sylan9eq 2230 |
. . . . 5
β’ ((π΄ = β
β§ π΅ = β
) β βπ β π΄ πΆ = βπ β π΅ πΆ) |
9 | 8 | expcom 116 |
. . . 4
β’ (π΅ = β
β (π΄ = β
β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
10 | 4, 9 | syld 45 |
. . 3
β’ (π΅ = β
β (π΄ β π΅ β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
11 | 1, 10 | syl5com 29 |
. 2
β’ (π β (π΅ = β
β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
12 | | cnvimass 4991 |
. . . . . . . . 9
β’ (β‘π β π΄) β dom π |
13 | | simprr 531 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π:(1...(β―βπ΅))β1-1-ontoβπ΅) |
14 | | f1of 5461 |
. . . . . . . . . 10
β’ (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β π:(1...(β―βπ΅))βΆπ΅) |
15 | 13, 14 | syl 14 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π:(1...(β―βπ΅))βΆπ΅) |
16 | 12, 15 | fssdm 5380 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (β‘π β π΄) β (1...(β―βπ΅))) |
17 | | f1ofn 5462 |
. . . . . . . . . . . 12
β’ (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β π Fn (1...(β―βπ΅))) |
18 | | elpreima 5635 |
. . . . . . . . . . . 12
β’ (π Fn (1...(β―βπ΅)) β (π β (β‘π β π΄) β (π β (1...(β―βπ΅)) β§ (πβπ) β π΄))) |
19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π β (β‘π β π΄) β (π β (1...(β―βπ΅)) β§ (πβπ) β π΄))) |
20 | 15 | ffvelcdmda 5651 |
. . . . . . . . . . . . 13
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (1...(β―βπ΅))) β (πβπ) β π΅) |
21 | 20 | ex 115 |
. . . . . . . . . . . 12
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π β (1...(β―βπ΅)) β (πβπ) β π΅)) |
22 | 21 | adantrd 279 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β ((π β (1...(β―βπ΅)) β§ (πβπ) β π΄) β (πβπ) β π΅)) |
23 | 19, 22 | sylbid 150 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π β (β‘π β π΄) β (πβπ) β π΅)) |
24 | 23 | imp 124 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β‘π β π΄)) β (πβπ) β π΅) |
25 | | fprodss.2 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β πΆ β β) |
26 | 25 | ex 115 |
. . . . . . . . . . . . . 14
β’ (π β (π β π΄ β πΆ β β)) |
27 | 26 | adantr 276 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΅) β (π β π΄ β πΆ β β)) |
28 | | eldif 3138 |
. . . . . . . . . . . . . . 15
β’ (π β (π΅ β π΄) β (π β π΅ β§ Β¬ π β π΄)) |
29 | | fprodss.3 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (π΅ β π΄)) β πΆ = 1) |
30 | | ax-1cn 7903 |
. . . . . . . . . . . . . . . 16
β’ 1 β
β |
31 | 29, 30 | eqeltrdi 2268 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (π΅ β π΄)) β πΆ β β) |
32 | 28, 31 | sylan2br 288 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β π΅ β§ Β¬ π β π΄)) β πΆ β β) |
33 | 32 | expr 375 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΅) β (Β¬ π β π΄ β πΆ β β)) |
34 | | eleq1 2240 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (π β π΄ β π β π΄)) |
35 | 34 | dcbid 838 |
. . . . . . . . . . . . . . 15
β’ (π = π β (DECID π β π΄ β DECID π β π΄)) |
36 | | fprodssdc.a |
. . . . . . . . . . . . . . . 16
β’ (π β βπ β π΅ DECID π β π΄) |
37 | 36 | adantr 276 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΅) β βπ β π΅ DECID π β π΄) |
38 | | simpr 110 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΅) β π β π΅) |
39 | 35, 37, 38 | rspcdva 2846 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΅) β DECID π β π΄) |
40 | | exmiddc 836 |
. . . . . . . . . . . . . 14
β’
(DECID π β π΄ β (π β π΄ β¨ Β¬ π β π΄)) |
41 | 39, 40 | syl 14 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΅) β (π β π΄ β¨ Β¬ π β π΄)) |
42 | 27, 33, 41 | mpjaod 718 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΅) β πΆ β β) |
43 | 42 | adantlr 477 |
. . . . . . . . . . 11
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β π΅) β πΆ β β) |
44 | 43 | fmpttd 5671 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π β π΅ β¦ πΆ):π΅βΆβ) |
45 | 44 | ffvelcdmda 5651 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ (πβπ) β π΅) β ((π β π΅ β¦ πΆ)β(πβπ)) β β) |
46 | 24, 45 | syldan 282 |
. . . . . . . 8
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β‘π β π΄)) β ((π β π΅ β¦ πΆ)β(πβπ)) β β) |
47 | | eqid 2177 |
. . . . . . . . 9
β’
(β€β₯β1) =
(β€β₯β1) |
48 | | simprl 529 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (β―βπ΅) β
β) |
49 | | nnuz 9562 |
. . . . . . . . . 10
β’ β =
(β€β₯β1) |
50 | 48, 49 | eleqtrdi 2270 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (β―βπ΅) β
(β€β₯β1)) |
51 | | ssidd 3176 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β
(1...(β―βπ΅))
β (1...(β―βπ΅))) |
52 | 47, 50, 51 | fprodntrivap 11591 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β
(β€β₯β1)βπ¦(π¦ # 0 β§ seqπ( Β· , (π β (β€β₯β1)
β¦ if(π β
(1...(β―βπ΅)),
((π β π΅ β¦ πΆ)β(πβπ)), 1))) β π¦)) |
53 | | eleq1 2240 |
. . . . . . . . . . . . 13
β’ (π = (πβπ) β (π β π΄ β (πβπ) β π΄)) |
54 | 53 | dcbid 838 |
. . . . . . . . . . . 12
β’ (π = (πβπ) β (DECID π β π΄ β DECID (πβπ) β π΄)) |
55 | 36 | ad3antrrr 492 |
. . . . . . . . . . . 12
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β βπ β
π΅ DECID
π β π΄) |
56 | 13 | ad2antrr 488 |
. . . . . . . . . . . . . 14
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β π:(1...(β―βπ΅))β1-1-ontoβπ΅) |
57 | 56, 14 | syl 14 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β π:(1...(β―βπ΅))βΆπ΅) |
58 | | simpr 110 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β π β
(1...(β―βπ΅))) |
59 | 57, 58 | ffvelcdmd 5652 |
. . . . . . . . . . . 12
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β (πβπ) β π΅) |
60 | 54, 55, 59 | rspcdva 2846 |
. . . . . . . . . . 11
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β DECID (πβπ) β π΄) |
61 | | f1ocnv 5474 |
. . . . . . . . . . . . . . 15
β’ (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β β‘π:π΅β1-1-ontoβ(1...(β―βπ΅))) |
62 | | f1of1 5460 |
. . . . . . . . . . . . . . 15
β’ (β‘π:π΅β1-1-ontoβ(1...(β―βπ΅)) β β‘π:π΅β1-1β(1...(β―βπ΅))) |
63 | 56, 61, 62 | 3syl 17 |
. . . . . . . . . . . . . 14
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β β‘π:π΅β1-1β(1...(β―βπ΅))) |
64 | 1 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β π΄ β π΅) |
65 | | f1elima 5773 |
. . . . . . . . . . . . . 14
β’ ((β‘π:π΅β1-1β(1...(β―βπ΅)) β§ (πβπ) β π΅ β§ π΄ β π΅) β ((β‘πβ(πβπ)) β (β‘π β π΄) β (πβπ) β π΄)) |
66 | 63, 59, 64, 65 | syl3anc 1238 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β ((β‘πβ(πβπ)) β (β‘π β π΄) β (πβπ) β π΄)) |
67 | | f1ocnvfv1 5777 |
. . . . . . . . . . . . . . 15
β’ ((π:(1...(β―βπ΅))β1-1-ontoβπ΅ β§ π β (1...(β―βπ΅))) β (β‘πβ(πβπ)) = π) |
68 | 56, 58, 67 | syl2anc 411 |
. . . . . . . . . . . . . 14
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β (β‘πβ(πβπ)) = π) |
69 | 68 | eleq1d 2246 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β ((β‘πβ(πβπ)) β (β‘π β π΄) β π β (β‘π β π΄))) |
70 | 66, 69 | bitr3d 190 |
. . . . . . . . . . . 12
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β ((πβπ) β π΄ β π β (β‘π β π΄))) |
71 | 70 | dcbid 838 |
. . . . . . . . . . 11
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β (DECID (πβπ) β π΄ β DECID π β (β‘π β π΄))) |
72 | 60, 71 | mpbid 147 |
. . . . . . . . . 10
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ π β
(1...(β―βπ΅)))
β DECID π β (β‘π β π΄)) |
73 | 16 | ad2antrr 488 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ Β¬ π β
(1...(β―βπ΅)))
β (β‘π β π΄) β (1...(β―βπ΅))) |
74 | | simpr 110 |
. . . . . . . . . . . . 13
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ Β¬ π β
(1...(β―βπ΅)))
β Β¬ π β
(1...(β―βπ΅))) |
75 | 73, 74 | ssneldd 3158 |
. . . . . . . . . . . 12
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ Β¬ π β
(1...(β―βπ΅)))
β Β¬ π β
(β‘π β π΄)) |
76 | 75 | olcd 734 |
. . . . . . . . . . 11
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ Β¬ π β
(1...(β―βπ΅)))
β (π β (β‘π β π΄) β¨ Β¬ π β (β‘π β π΄))) |
77 | | df-dc 835 |
. . . . . . . . . . 11
β’
(DECID π β (β‘π β π΄) β (π β (β‘π β π΄) β¨ Β¬ π β (β‘π β π΄))) |
78 | 76, 77 | sylibr 134 |
. . . . . . . . . 10
β’ ((((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β§ Β¬ π β
(1...(β―βπ΅)))
β DECID π β (β‘π β π΄)) |
79 | | eluzelz 9536 |
. . . . . . . . . . . . 13
β’ (π β
(β€β₯β1) β π β β€) |
80 | 79 | adantl 277 |
. . . . . . . . . . . 12
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β π β
β€) |
81 | | 1zzd 9279 |
. . . . . . . . . . . 12
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β 1 β β€) |
82 | 48 | adantr 276 |
. . . . . . . . . . . . 13
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β (β―βπ΅)
β β) |
83 | 82 | nnzd 9373 |
. . . . . . . . . . . 12
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β (β―βπ΅)
β β€) |
84 | | fzdcel 10039 |
. . . . . . . . . . . 12
β’ ((π β β€ β§ 1 β
β€ β§ (β―βπ΅) β β€) β
DECID π
β (1...(β―βπ΅))) |
85 | 80, 81, 83, 84 | syl3anc 1238 |
. . . . . . . . . . 11
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β DECID π β (1...(β―βπ΅))) |
86 | | exmiddc 836 |
. . . . . . . . . . 11
β’
(DECID π β (1...(β―βπ΅)) β (π β (1...(β―βπ΅)) β¨ Β¬ π β (1...(β―βπ΅)))) |
87 | 85, 86 | syl 14 |
. . . . . . . . . 10
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β (π β
(1...(β―βπ΅))
β¨ Β¬ π β
(1...(β―βπ΅)))) |
88 | 72, 78, 87 | mpjaodan 798 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β€β₯β1))
β DECID π β (β‘π β π΄)) |
89 | 88 | ralrimiva 2550 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β
(β€β₯β1)DECID π β (β‘π β π΄)) |
90 | | 1zzd 9279 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β 1 β
β€) |
91 | | eldifi 3257 |
. . . . . . . . . . . 12
β’ (π β
((1...(β―βπ΅))
β (β‘π β π΄)) β π β (1...(β―βπ΅))) |
92 | 91, 20 | sylan2 286 |
. . . . . . . . . . 11
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β (πβπ) β π΅) |
93 | | eldifn 3258 |
. . . . . . . . . . . . 13
β’ (π β
((1...(β―βπ΅))
β (β‘π β π΄)) β Β¬ π β (β‘π β π΄)) |
94 | 93 | adantl 277 |
. . . . . . . . . . . 12
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β Β¬ π β (β‘π β π΄)) |
95 | 91 | adantl 277 |
. . . . . . . . . . . . 13
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β π β (1...(β―βπ΅))) |
96 | 19 | adantr 276 |
. . . . . . . . . . . . 13
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β (π β (β‘π β π΄) β (π β (1...(β―βπ΅)) β§ (πβπ) β π΄))) |
97 | 95, 96 | mpbirand 441 |
. . . . . . . . . . . 12
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β (π β (β‘π β π΄) β (πβπ) β π΄)) |
98 | 94, 97 | mtbid 672 |
. . . . . . . . . . 11
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β Β¬ (πβπ) β π΄) |
99 | 92, 98 | eldifd 3139 |
. . . . . . . . . 10
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β (πβπ) β (π΅ β π΄)) |
100 | | difss 3261 |
. . . . . . . . . . . . 13
β’ (π΅ β π΄) β π΅ |
101 | | resmpt 4955 |
. . . . . . . . . . . . 13
β’ ((π΅ β π΄) β π΅ β ((π β π΅ β¦ πΆ) βΎ (π΅ β π΄)) = (π β (π΅ β π΄) β¦ πΆ)) |
102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . 12
β’ ((π β π΅ β¦ πΆ) βΎ (π΅ β π΄)) = (π β (π΅ β π΄) β¦ πΆ) |
103 | 102 | fveq1i 5516 |
. . . . . . . . . . 11
β’ (((π β π΅ β¦ πΆ) βΎ (π΅ β π΄))β(πβπ)) = ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) |
104 | | fvres 5539 |
. . . . . . . . . . 11
β’ ((πβπ) β (π΅ β π΄) β (((π β π΅ β¦ πΆ) βΎ (π΅ β π΄))β(πβπ)) = ((π β π΅ β¦ πΆ)β(πβπ))) |
105 | 103, 104 | eqtr3id 2224 |
. . . . . . . . . 10
β’ ((πβπ) β (π΅ β π΄) β ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) = ((π β π΅ β¦ πΆ)β(πβπ))) |
106 | 99, 105 | syl 14 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) = ((π β π΅ β¦ πΆ)β(πβπ))) |
107 | | 1ex 7951 |
. . . . . . . . . . . . . . 15
β’ 1 β
V |
108 | 107 | elsn2 3626 |
. . . . . . . . . . . . . 14
β’ (πΆ β {1} β πΆ = 1) |
109 | 29, 108 | sylibr 134 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π΅ β π΄)) β πΆ β {1}) |
110 | 109 | fmpttd 5671 |
. . . . . . . . . . . 12
β’ (π β (π β (π΅ β π΄) β¦ πΆ):(π΅ β π΄)βΆ{1}) |
111 | 110 | ad2antrr 488 |
. . . . . . . . . . 11
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β (π β (π΅ β π΄) β¦ πΆ):(π΅ β π΄)βΆ{1}) |
112 | 111, 99 | ffvelcdmd 5652 |
. . . . . . . . . 10
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) β {1}) |
113 | | elsni 3610 |
. . . . . . . . . 10
β’ (((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) β {1} β ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) = 1) |
114 | 112, 113 | syl 14 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β ((π β (π΅ β π΄) β¦ πΆ)β(πβπ)) = 1) |
115 | 106, 114 | eqtr3d 2212 |
. . . . . . . 8
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β ((1...(β―βπ΅)) β (β‘π β π΄))) β ((π β π΅ β¦ πΆ)β(πβπ)) = 1) |
116 | | fzssuz 10064 |
. . . . . . . . 9
β’
(1...(β―βπ΅)) β
(β€β₯β1) |
117 | 116 | a1i 9 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β
(1...(β―βπ΅))
β (β€β₯β1)) |
118 | 85 | ralrimiva 2550 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β
(β€β₯β1)DECID π β (1...(β―βπ΅))) |
119 | 16, 46, 52, 89, 90, 115, 117, 118 | prodssdc 11596 |
. . . . . . 7
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β (β‘π β π΄)((π β π΅ β¦ πΆ)β(πβπ)) = βπ β (1...(β―βπ΅))((π β π΅ β¦ πΆ)β(πβπ))) |
120 | 1 | adantr 276 |
. . . . . . . . . . . 12
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π΄ β π΅) |
121 | 120 | resmptd 4958 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β ((π β π΅ β¦ πΆ) βΎ π΄) = (π β π΄ β¦ πΆ)) |
122 | 121 | fveq1d 5517 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (((π β π΅ β¦ πΆ) βΎ π΄)βπ) = ((π β π΄ β¦ πΆ)βπ)) |
123 | | fvres 5539 |
. . . . . . . . . 10
β’ (π β π΄ β (((π β π΅ β¦ πΆ) βΎ π΄)βπ) = ((π β π΅ β¦ πΆ)βπ)) |
124 | 122, 123 | sylan9req 2231 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β π΄) β ((π β π΄ β¦ πΆ)βπ) = ((π β π΅ β¦ πΆ)βπ)) |
125 | 124 | prodeq2dv 11573 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ ((π β π΄ β¦ πΆ)βπ) = βπ β π΄ ((π β π΅ β¦ πΆ)βπ)) |
126 | | fveq2 5515 |
. . . . . . . . 9
β’ (π = (πβπ) β ((π β π΅ β¦ πΆ)βπ) = ((π β π΅ β¦ πΆ)β(πβπ))) |
127 | | fprodss.4 |
. . . . . . . . . . . 12
β’ (π β π΅ β Fin) |
128 | 127 | adantr 276 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π΅ β Fin) |
129 | 36 | adantr 276 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΅ DECID π β π΄) |
130 | | ssfidc 6933 |
. . . . . . . . . . 11
β’ ((π΅ β Fin β§ π΄ β π΅ β§ βπ β π΅ DECID π β π΄) β π΄ β Fin) |
131 | 128, 120,
129, 130 | syl3anc 1238 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π΄ β Fin) |
132 | 120, 13, 131 | preimaf1ofi 6949 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (β‘π β π΄) β Fin) |
133 | | f1of1 5460 |
. . . . . . . . . . . 12
β’ (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β π:(1...(β―βπ΅))β1-1βπ΅) |
134 | 13, 133 | syl 14 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π:(1...(β―βπ΅))β1-1βπ΅) |
135 | | f1ores 5476 |
. . . . . . . . . . 11
β’ ((π:(1...(β―βπ΅))β1-1βπ΅ β§ (β‘π β π΄) β (1...(β―βπ΅))) β (π βΎ (β‘π β π΄)):(β‘π β π΄)β1-1-ontoβ(π β (β‘π β π΄))) |
136 | 134, 16, 135 | syl2anc 411 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π βΎ (β‘π β π΄)):(β‘π β π΄)β1-1-ontoβ(π β (β‘π β π΄))) |
137 | | f1ofo 5468 |
. . . . . . . . . . . . 13
β’ (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β π:(1...(β―βπ΅))βontoβπ΅) |
138 | 13, 137 | syl 14 |
. . . . . . . . . . . 12
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β π:(1...(β―βπ΅))βontoβπ΅) |
139 | | foimacnv 5479 |
. . . . . . . . . . . 12
β’ ((π:(1...(β―βπ΅))βontoβπ΅ β§ π΄ β π΅) β (π β (β‘π β π΄)) = π΄) |
140 | 138, 120,
139 | syl2anc 411 |
. . . . . . . . . . 11
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π β (β‘π β π΄)) = π΄) |
141 | 140 | f1oeq3d 5458 |
. . . . . . . . . 10
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β ((π βΎ (β‘π β π΄)):(β‘π β π΄)β1-1-ontoβ(π β (β‘π β π΄)) β (π βΎ (β‘π β π΄)):(β‘π β π΄)β1-1-ontoβπ΄)) |
142 | 136, 141 | mpbid 147 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (π βΎ (β‘π β π΄)):(β‘π β π΄)β1-1-ontoβπ΄) |
143 | | fvres 5539 |
. . . . . . . . . 10
β’ (π β (β‘π β π΄) β ((π βΎ (β‘π β π΄))βπ) = (πβπ)) |
144 | 143 | adantl 277 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (β‘π β π΄)) β ((π βΎ (β‘π β π΄))βπ) = (πβπ)) |
145 | 120 | sselda 3155 |
. . . . . . . . . 10
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β π΄) β π β π΅) |
146 | 44 | ffvelcdmda 5651 |
. . . . . . . . . 10
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β π΅) β ((π β π΅ β¦ πΆ)βπ) β β) |
147 | 145, 146 | syldan 282 |
. . . . . . . . 9
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β π΄) β ((π β π΅ β¦ πΆ)βπ) β β) |
148 | 126, 132,
142, 144, 147 | fprodf1o 11595 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ ((π β π΅ β¦ πΆ)βπ) = βπ β (β‘π β π΄)((π β π΅ β¦ πΆ)β(πβπ))) |
149 | 125, 148 | eqtrd 2210 |
. . . . . . 7
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ ((π β π΄ β¦ πΆ)βπ) = βπ β (β‘π β π΄)((π β π΅ β¦ πΆ)β(πβπ))) |
150 | 48 | nnzd 9373 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β (β―βπ΅) β
β€) |
151 | 90, 150 | fzfigd 10430 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β
(1...(β―βπ΅))
β Fin) |
152 | | eqidd 2178 |
. . . . . . . 8
β’ (((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β§ π β (1...(β―βπ΅))) β (πβπ) = (πβπ)) |
153 | 126, 151,
13, 152, 146 | fprodf1o 11595 |
. . . . . . 7
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΅ ((π β π΅ β¦ πΆ)βπ) = βπ β (1...(β―βπ΅))((π β π΅ β¦ πΆ)β(πβπ))) |
154 | 119, 149,
153 | 3eqtr4d 2220 |
. . . . . 6
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ ((π β π΄ β¦ πΆ)βπ) = βπ β π΅ ((π β π΅ β¦ πΆ)βπ)) |
155 | 25 | ralrimiva 2550 |
. . . . . . . 8
β’ (π β βπ β π΄ πΆ β β) |
156 | 155 | adantr 276 |
. . . . . . 7
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ πΆ β β) |
157 | | prodfct 11594 |
. . . . . . 7
β’
(βπ β
π΄ πΆ β β β βπ β π΄ ((π β π΄ β¦ πΆ)βπ) = βπ β π΄ πΆ) |
158 | 156, 157 | syl 14 |
. . . . . 6
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ ((π β π΄ β¦ πΆ)βπ) = βπ β π΄ πΆ) |
159 | 43 | ralrimiva 2550 |
. . . . . . 7
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΅ πΆ β β) |
160 | | prodfct 11594 |
. . . . . . 7
β’
(βπ β
π΅ πΆ β β β βπ β π΅ ((π β π΅ β¦ πΆ)βπ) = βπ β π΅ πΆ) |
161 | 159, 160 | syl 14 |
. . . . . 6
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΅ ((π β π΅ β¦ πΆ)βπ) = βπ β π΅ πΆ) |
162 | 154, 158,
161 | 3eqtr3d 2218 |
. . . . 5
β’ ((π β§ ((β―βπ΅) β β β§ π:(1...(β―βπ΅))β1-1-ontoβπ΅)) β βπ β π΄ πΆ = βπ β π΅ πΆ) |
163 | 162 | expr 375 |
. . . 4
β’ ((π β§ (β―βπ΅) β β) β (π:(1...(β―βπ΅))β1-1-ontoβπ΅ β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
164 | 163 | exlimdv 1819 |
. . 3
β’ ((π β§ (β―βπ΅) β β) β
(βπ π:(1...(β―βπ΅))β1-1-ontoβπ΅ β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
165 | 164 | expimpd 363 |
. 2
β’ (π β (((β―βπ΅) β β β§
βπ π:(1...(β―βπ΅))β1-1-ontoβπ΅) β βπ β π΄ πΆ = βπ β π΅ πΆ)) |
166 | | fz1f1o 11382 |
. . 3
β’ (π΅ β Fin β (π΅ = β
β¨
((β―βπ΅) β
β β§ βπ
π:(1...(β―βπ΅))β1-1-ontoβπ΅))) |
167 | 127, 166 | syl 14 |
. 2
β’ (π β (π΅ = β
β¨ ((β―βπ΅) β β β§
βπ π:(1...(β―βπ΅))β1-1-ontoβπ΅))) |
168 | 11, 165, 167 | mpjaod 718 |
1
β’ (π β βπ β π΄ πΆ = βπ β π΅ πΆ) |