Step | Hyp | Ref
| Expression |
1 | | fprodss.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | | sseq2 3171 |
. . . . 5
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) |
3 | | ss0 3455 |
. . . . 5
⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
4 | 2, 3 | syl6bi 162 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
5 | | prodeq1 11516 |
. . . . . 6
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
6 | | prodeq1 11516 |
. . . . . . 7
⊢ (𝐵 = ∅ → ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
7 | 6 | eqcomd 2176 |
. . . . . 6
⊢ (𝐵 = ∅ → ∏𝑘 ∈ ∅ 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
8 | 5, 7 | sylan9eq 2223 |
. . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
9 | 8 | expcom 115 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
10 | 4, 9 | syld 45 |
. . 3
⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
11 | 1, 10 | syl5com 29 |
. 2
⊢ (𝜑 → (𝐵 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
12 | | cnvimass 4974 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
13 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) |
14 | | f1of 5442 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
15 | 13, 14 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
16 | 12, 15 | fssdm 5362 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) |
17 | | f1ofn 5443 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓 Fn (1...(♯‘𝐵))) |
18 | | elpreima 5615 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
20 | 15 | ffvelrnda 5631 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) ∈ 𝐵) |
21 | 20 | ex 114 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓‘𝑛) ∈ 𝐵)) |
22 | 21 | adantrd 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
23 | 19, 22 | sylbid 149 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
24 | 23 | imp 123 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → (𝑓‘𝑛) ∈ 𝐵) |
25 | | fprodss.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
26 | 25 | ex 114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
27 | 26 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
28 | | eldif 3130 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
29 | | fprodss.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) |
30 | | ax-1cn 7867 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
31 | 29, 30 | eqeltrdi 2261 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
32 | 28, 31 | sylan2br 286 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
33 | 32 | expr 373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
34 | | eleq1 2233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
35 | 34 | dcbid 833 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
36 | | fprodssdc.a |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
37 | 36 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
38 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
39 | 35, 37, 38 | rspcdva 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ 𝐴) |
40 | | exmiddc 831 |
. . . . . . . . . . . . . 14
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
41 | 39, 40 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
42 | 27, 33, 41 | mpjaod 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
43 | 42 | adantlr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
44 | 43 | fmpttd 5651 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
45 | 44 | ffvelrnda 5631 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
46 | 24, 45 | syldan 280 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
47 | | eqid 2170 |
. . . . . . . . 9
⊢
(ℤ≥‘1) =
(ℤ≥‘1) |
48 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (♯‘𝐵) ∈
ℕ) |
49 | | nnuz 9522 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
50 | 48, 49 | eleqtrdi 2263 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (♯‘𝐵) ∈
(ℤ≥‘1)) |
51 | | ssidd 3168 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
⊆ (1...(♯‘𝐵))) |
52 | 47, 50, 51 | fprodntrivap 11547 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∃𝑚 ∈
(ℤ≥‘1)∃𝑦(𝑦 # 0 ∧ seq𝑚( · , (𝑛 ∈ (ℤ≥‘1)
↦ if(𝑛 ∈
(1...(♯‘𝐵)),
((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)), 1))) ⇝ 𝑦)) |
53 | | eleq1 2233 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑓‘𝑝) → (𝑗 ∈ 𝐴 ↔ (𝑓‘𝑝) ∈ 𝐴)) |
54 | 53 | dcbid 833 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑓‘𝑝) → (DECID 𝑗 ∈ 𝐴 ↔ DECID (𝑓‘𝑝) ∈ 𝐴)) |
55 | 36 | ad3antrrr 489 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ ∀𝑗 ∈
𝐵 DECID
𝑗 ∈ 𝐴) |
56 | 13 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) |
57 | 56, 14 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ 𝑓:(1...(♯‘𝐵))⟶𝐵) |
58 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ 𝑝 ∈
(1...(♯‘𝐵))) |
59 | 57, 58 | ffvelrnd 5632 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ (𝑓‘𝑝) ∈ 𝐵) |
60 | 54, 55, 59 | rspcdva 2839 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ DECID (𝑓‘𝑝) ∈ 𝐴) |
61 | | f1ocnv 5455 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→(1...(♯‘𝐵))) |
62 | | f1of1 5441 |
. . . . . . . . . . . . . . 15
⊢ (◡𝑓:𝐵–1-1-onto→(1...(♯‘𝐵)) → ◡𝑓:𝐵–1-1→(1...(♯‘𝐵))) |
63 | 56, 61, 62 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ ◡𝑓:𝐵–1-1→(1...(♯‘𝐵))) |
64 | 1 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ 𝐴 ⊆ 𝐵) |
65 | | f1elima 5752 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑓:𝐵–1-1→(1...(♯‘𝐵)) ∧ (𝑓‘𝑝) ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((◡𝑓‘(𝑓‘𝑝)) ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑝) ∈ 𝐴)) |
66 | 63, 59, 64, 65 | syl3anc 1233 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ ((◡𝑓‘(𝑓‘𝑝)) ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑝) ∈ 𝐴)) |
67 | | f1ocnvfv1 5756 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑝 ∈ (1...(♯‘𝐵))) → (◡𝑓‘(𝑓‘𝑝)) = 𝑝) |
68 | 56, 58, 67 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ (◡𝑓‘(𝑓‘𝑝)) = 𝑝) |
69 | 68 | eleq1d 2239 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ ((◡𝑓‘(𝑓‘𝑝)) ∈ (◡𝑓 “ 𝐴) ↔ 𝑝 ∈ (◡𝑓 “ 𝐴))) |
70 | 66, 69 | bitr3d 189 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ ((𝑓‘𝑝) ∈ 𝐴 ↔ 𝑝 ∈ (◡𝑓 “ 𝐴))) |
71 | 70 | dcbid 833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ (DECID (𝑓‘𝑝) ∈ 𝐴 ↔ DECID 𝑝 ∈ (◡𝑓 “ 𝐴))) |
72 | 60, 71 | mpbid 146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ 𝑝 ∈
(1...(♯‘𝐵)))
→ DECID 𝑝 ∈ (◡𝑓 “ 𝐴)) |
73 | 16 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ∈
(1...(♯‘𝐵)))
→ (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) |
74 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ∈
(1...(♯‘𝐵)))
→ ¬ 𝑝 ∈
(1...(♯‘𝐵))) |
75 | 73, 74 | ssneldd 3150 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ∈
(1...(♯‘𝐵)))
→ ¬ 𝑝 ∈
(◡𝑓 “ 𝐴)) |
76 | 75 | olcd 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ∈
(1...(♯‘𝐵)))
→ (𝑝 ∈ (◡𝑓 “ 𝐴) ∨ ¬ 𝑝 ∈ (◡𝑓 “ 𝐴))) |
77 | | df-dc 830 |
. . . . . . . . . . 11
⊢
(DECID 𝑝 ∈ (◡𝑓 “ 𝐴) ↔ (𝑝 ∈ (◡𝑓 “ 𝐴) ∨ ¬ 𝑝 ∈ (◡𝑓 “ 𝐴))) |
78 | 76, 77 | sylibr 133 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
∧ ¬ 𝑝 ∈
(1...(♯‘𝐵)))
→ DECID 𝑝 ∈ (◡𝑓 “ 𝐴)) |
79 | | eluzelz 9496 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈
(ℤ≥‘1) → 𝑝 ∈ ℤ) |
80 | 79 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ 𝑝 ∈
ℤ) |
81 | | 1zzd 9239 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ 1 ∈ ℤ) |
82 | 48 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (♯‘𝐵)
∈ ℕ) |
83 | 82 | nnzd 9333 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (♯‘𝐵)
∈ ℤ) |
84 | | fzdcel 9996 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℤ ∧ 1 ∈
ℤ ∧ (♯‘𝐵) ∈ ℤ) →
DECID 𝑝
∈ (1...(♯‘𝐵))) |
85 | 80, 81, 83, 84 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ DECID 𝑝 ∈ (1...(♯‘𝐵))) |
86 | | exmiddc 831 |
. . . . . . . . . . 11
⊢
(DECID 𝑝 ∈ (1...(♯‘𝐵)) → (𝑝 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑝 ∈ (1...(♯‘𝐵)))) |
87 | 85, 86 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ (𝑝 ∈
(1...(♯‘𝐵))
∨ ¬ 𝑝 ∈
(1...(♯‘𝐵)))) |
88 | 72, 78, 87 | mpjaodan 793 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑝 ∈ (ℤ≥‘1))
→ DECID 𝑝 ∈ (◡𝑓 “ 𝐴)) |
89 | 88 | ralrimiva 2543 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑝 ∈
(ℤ≥‘1)DECID 𝑝 ∈ (◡𝑓 “ 𝐴)) |
90 | | 1zzd 9239 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 1 ∈
ℤ) |
91 | | eldifi 3249 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → 𝑛 ∈ (1...(♯‘𝐵))) |
92 | 91, 20 | sylan2 284 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ 𝐵) |
93 | | eldifn 3250 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
94 | 93 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
95 | 91 | adantl 275 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → 𝑛 ∈ (1...(♯‘𝐵))) |
96 | 19 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
97 | 95, 96 | mpbirand 439 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑛) ∈ 𝐴)) |
98 | 94, 97 | mtbid 667 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ (𝑓‘𝑛) ∈ 𝐴) |
99 | 92, 98 | eldifd 3131 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴)) |
100 | | difss 3253 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
101 | | resmpt 4939 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) |
102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) |
103 | 102 | fveq1i 5497 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) |
104 | | fvres 5520 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
105 | 103, 104 | eqtr3id 2217 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
106 | 99, 105 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
107 | | 1ex 7915 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
108 | 107 | elsn2 3617 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ {1} ↔ 𝐶 = 1) |
109 | 29, 108 | sylibr 133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ {1}) |
110 | 109 | fmpttd 5651 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{1}) |
111 | 110 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{1}) |
112 | 111, 99 | ffvelrnd 5632 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {1}) |
113 | | elsni 3601 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {1} → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
114 | 112, 113 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
115 | 106, 114 | eqtr3d 2205 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = 1) |
116 | | fzssuz 10021 |
. . . . . . . . 9
⊢
(1...(♯‘𝐵)) ⊆
(ℤ≥‘1) |
117 | 116 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
⊆ (ℤ≥‘1)) |
118 | 85 | ralrimiva 2543 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑝 ∈
(ℤ≥‘1)DECID 𝑝 ∈ (1...(♯‘𝐵))) |
119 | 16, 46, 52, 89, 90, 115, 117, 118 | prodssdc 11552 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
120 | 1 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐴 ⊆ 𝐵) |
121 | 120 | resmptd 4942 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
122 | 121 | fveq1d 5498 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
123 | | fvres 5520 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝐴 → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
124 | 122, 123 | sylan9req 2224 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
125 | 124 | prodeq2dv 11529 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
126 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
127 | | fprodss.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
128 | 127 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐵 ∈ Fin) |
129 | 36 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
130 | | ssfidc 6912 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) → 𝐴 ∈ Fin) |
131 | 128, 120,
129, 130 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐴 ∈ Fin) |
132 | 120, 13, 131 | preimaf1ofi 6928 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ∈ Fin) |
133 | | f1of1 5441 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
134 | 13, 133 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
135 | | f1ores 5457 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐵))–1-1→𝐵 ∧ (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
136 | 134, 16, 135 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
137 | | f1ofo 5449 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
138 | 13, 137 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
139 | | foimacnv 5460 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(♯‘𝐵))–onto→𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
140 | 138, 120,
139 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
141 | 140 | f1oeq3d 5439 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
142 | 136, 141 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
143 | | fvres 5520 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
144 | 143 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
145 | 120 | sselda 3147 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
146 | 44 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
147 | 145, 146 | syldan 280 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
148 | 126, 132,
142, 144, 147 | fprodf1o 11551 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
149 | 125, 148 | eqtrd 2203 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
150 | 48 | nnzd 9333 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (♯‘𝐵) ∈
ℤ) |
151 | 90, 150 | fzfigd 10387 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
∈ Fin) |
152 | | eqidd 2171 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
153 | 126, 151,
13, 152, 146 | fprodf1o 11551 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
154 | 119, 149,
153 | 3eqtr4d 2213 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
155 | 25 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
156 | 155 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
157 | | prodfct 11550 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) |
158 | 156, 157 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) |
159 | 43 | ralrimiva 2543 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
160 | | prodfct 11550 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐵 𝐶) |
161 | 159, 160 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐵 𝐶) |
162 | 154, 158,
161 | 3eqtr3d 2211 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
163 | 162 | expr 373 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
164 | 163 | exlimdv 1812 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
165 | 164 | expimpd 361 |
. 2
⊢ (𝜑 → (((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶)) |
166 | | fz1f1o 11338 |
. . 3
⊢ (𝐵 ∈ Fin → (𝐵 = ∅ ∨
((♯‘𝐵) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
167 | 127, 166 | syl 14 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
168 | 11, 165, 167 | mpjaod 713 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |