ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnel5 GIF version

Theorem lspsnel5 13908
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.)
Hypotheses
Ref Expression
lspsnel5.v 𝑉 = (Base‘𝑊)
lspsnel5.s 𝑆 = (LSubSp‘𝑊)
lspsnel5.n 𝑁 = (LSpan‘𝑊)
lspsnel5.w (𝜑𝑊 ∈ LMod)
lspsnel5.a (𝜑𝑈𝑆)
lspsnel5.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsnel5 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))

Proof of Theorem lspsnel5
StepHypRef Expression
1 lspsnel5.x . 2 (𝜑𝑋𝑉)
2 lspsnel5.v . . 3 𝑉 = (Base‘𝑊)
3 lspsnel5.s . . 3 𝑆 = (LSubSp‘𝑊)
4 lspsnel5.n . . 3 𝑁 = (LSpan‘𝑊)
5 lspsnel5.w . . 3 (𝜑𝑊 ∈ LMod)
6 lspsnel5.a . . 3 (𝜑𝑈𝑆)
72, 3, 4, 5, 6lspsnel6 13907 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
81, 7mpbirand 441 1 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wss 3154  {csn 3619  cfv 5255  Basecbs 12621  LModclmod 13786  LSubSpclss 13851  LSpanclspn 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-lmod 13788  df-lssm 13852  df-lsp 13886
This theorem is referenced by:  lspsnel5a  13909  lspprid1  13910  lspsnss2  13918
  Copyright terms: Public domain W3C validator