ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbbndc GIF version

Theorem nbbndc 1394
Description: Move negation outside of biconditional, for decidable propositions. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.)
Assertion
Ref Expression
nbbndc (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑𝜓))))

Proof of Theorem nbbndc
StepHypRef Expression
1 xor3dc 1387 . . . . 5 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))))
21imp 124 . . . 4 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))
3 con2bidc 875 . . . . 5 (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))))
43imp 124 . . . 4 ((DECID 𝜑DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))
52, 4bitrd 188 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))
6 bicom 140 . . 3 ((𝜓 ↔ ¬ 𝜑) ↔ (¬ 𝜑𝜓))
75, 6bitr2di 197 . 2 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (𝜑𝜓)))
87ex 115 1 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by:  biassdc  1395
  Copyright terms: Public domain W3C validator