| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nbbndc | GIF version | ||
| Description: Move negation outside of biconditional, for decidable propositions. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.) |
| Ref | Expression |
|---|---|
| nbbndc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3dc 1398 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))) | |
| 2 | 1 | imp 124 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓))) |
| 3 | con2bidc 876 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)))) | |
| 4 | 3 | imp 124 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))) |
| 5 | 2, 4 | bitrd 188 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑))) |
| 6 | bicom 140 | . . 3 ⊢ ((𝜓 ↔ ¬ 𝜑) ↔ (¬ 𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | bitr2di 197 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
| 8 | 7 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: biassdc 1406 |
| Copyright terms: Public domain | W3C validator |