Proof of Theorem xordc1
| Step | Hyp | Ref
| Expression |
| 1 | | andir 820 |
. . 3
⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ∨ (𝜓 ∧ ¬ (𝜑 ∧ 𝜓)))) |
| 2 | | simpl 109 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) → 𝜑) |
| 3 | | imnan 691 |
. . . . . 6
⊢ ((𝜓 → ¬ 𝜑) ↔ ¬ (𝜓 ∧ 𝜑)) |
| 4 | | ancom 266 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) |
| 5 | 3, 4 | xchbinxr 684 |
. . . . 5
⊢ ((𝜓 → ¬ 𝜑) ↔ ¬ (𝜑 ∧ 𝜓)) |
| 6 | | pm3.35 347 |
. . . . 5
⊢ ((𝜓 ∧ (𝜓 → ¬ 𝜑)) → ¬ 𝜑) |
| 7 | 5, 6 | sylan2br 288 |
. . . 4
⊢ ((𝜓 ∧ ¬ (𝜑 ∧ 𝜓)) → ¬ 𝜑) |
| 8 | 2, 7 | orim12i 760 |
. . 3
⊢ (((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ∨ (𝜓 ∧ ¬ (𝜑 ∧ 𝜓))) → (𝜑 ∨ ¬ 𝜑)) |
| 9 | 1, 8 | sylbi 121 |
. 2
⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) → (𝜑 ∨ ¬ 𝜑)) |
| 10 | | df-xor 1387 |
. 2
⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| 11 | | df-dc 836 |
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
| 12 | 9, 10, 11 | 3imtr4i 201 |
1
⊢ ((𝜑 ⊻ 𝜓) → DECID 𝜑) |