ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bddc GIF version

Theorem necon1bddc 2424
Description: Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon1bddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
Assertion
Ref Expression
necon1bddc (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))

Proof of Theorem necon1bddc
StepHypRef Expression
1 necon1bddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
2 df-ne 2348 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 238 . . 3 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3imbitrdi 161 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜓)))
5 con1dc 856 . 2 (DECID 𝐴 = 𝐵 → ((¬ 𝐴 = 𝐵𝜓) → (¬ 𝜓𝐴 = 𝐵)))
64, 5sylcom 28 1 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 834   = wceq 1353  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-ne 2348
This theorem is referenced by:  necon1ddc  2425  pc2dvds  12332
  Copyright terms: Public domain W3C validator