![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3abid | GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2361 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 668 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2361 |
This theorem is referenced by: necon3bbid 2400 fndmdif 5642 expnegap0 10559 gcdn0gt0 12011 cncongr2 12136 mulgnegnn 13072 |
Copyright terms: Public domain | W3C validator |