Step | Hyp | Ref
| Expression |
1 | | difss 3261 |
. . . . 5
⊢ (𝐹 ∖ 𝐺) ⊆ 𝐹 |
2 | | dmss 4826 |
. . . . 5
⊢ ((𝐹 ∖ 𝐺) ⊆ 𝐹 → dom (𝐹 ∖ 𝐺) ⊆ dom 𝐹) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ dom
(𝐹 ∖ 𝐺) ⊆ dom 𝐹 |
4 | | fndm 5315 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
5 | 4 | adantr 276 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrid 3205 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) ⊆ 𝐴) |
7 | | dfss1 3339 |
. . 3
⊢ (dom
(𝐹 ∖ 𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) |
8 | 6, 7 | sylib 122 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) |
9 | | vex 2740 |
. . . . 5
⊢ 𝑥 ∈ V |
10 | 9 | eldm 4824 |
. . . 4
⊢ (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦) |
11 | | eqcom 2179 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥)) |
12 | | fnbrfvb 5556 |
. . . . . . . 8
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐹‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
13 | 11, 12 | bitrid 192 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
14 | 13 | adantll 476 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
15 | 14 | necon3abid 2386 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
16 | | funfvex 5532 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
17 | 16 | funfni 5316 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
18 | 17 | adantlr 477 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
19 | | breq2 4007 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐺𝑦 ↔ 𝑥𝐺(𝐹‘𝑥))) |
20 | 19 | notbid 667 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
21 | 20 | ceqsexgv 2866 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
22 | 18, 21 | syl 14 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
23 | | eqcom 2179 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) |
24 | | fnbrfvb 5556 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
25 | 23, 24 | bitrid 192 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
26 | 25 | adantlr 477 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
27 | 26 | anbi1d 465 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))) |
28 | | brdif 4056 |
. . . . . . 7
⊢ (𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)) |
29 | 27, 28 | bitr4di 198 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹 ∖ 𝐺)𝑦)) |
30 | 29 | exbidv 1825 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦)) |
31 | 15, 22, 30 | 3bitr2rd 217 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
32 | 10, 31 | bitrid 192 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
33 | 32 | rabbi2dva 3343 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) |
34 | 8, 33 | eqtr3d 2212 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) |