| Step | Hyp | Ref
 | Expression | 
| 1 |   | difss 3289 | 
. . . . 5
⊢ (𝐹 ∖ 𝐺) ⊆ 𝐹 | 
| 2 |   | dmss 4865 | 
. . . . 5
⊢ ((𝐹 ∖ 𝐺) ⊆ 𝐹 → dom (𝐹 ∖ 𝐺) ⊆ dom 𝐹) | 
| 3 | 1, 2 | ax-mp 5 | 
. . . 4
⊢ dom
(𝐹 ∖ 𝐺) ⊆ dom 𝐹 | 
| 4 |   | fndm 5357 | 
. . . . 5
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | 
| 5 | 4 | adantr 276 | 
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) | 
| 6 | 3, 5 | sseqtrid 3233 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) ⊆ 𝐴) | 
| 7 |   | dfss1 3367 | 
. . 3
⊢ (dom
(𝐹 ∖ 𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) | 
| 8 | 6, 7 | sylib 122 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) | 
| 9 |   | vex 2766 | 
. . . . 5
⊢ 𝑥 ∈ V | 
| 10 | 9 | eldm 4863 | 
. . . 4
⊢ (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦) | 
| 11 |   | eqcom 2198 | 
. . . . . . . 8
⊢ ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥)) | 
| 12 |   | fnbrfvb 5601 | 
. . . . . . . 8
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐹‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) | 
| 13 | 11, 12 | bitrid 192 | 
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) | 
| 14 | 13 | adantll 476 | 
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) | 
| 15 | 14 | necon3abid 2406 | 
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) | 
| 16 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | 
| 17 | 16 | funfni 5358 | 
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | 
| 18 | 17 | adantlr 477 | 
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | 
| 19 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐺𝑦 ↔ 𝑥𝐺(𝐹‘𝑥))) | 
| 20 | 19 | notbid 668 | 
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) | 
| 21 | 20 | ceqsexgv 2893 | 
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) | 
| 22 | 18, 21 | syl 14 | 
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) | 
| 23 |   | eqcom 2198 | 
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | 
| 24 |   | fnbrfvb 5601 | 
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | 
| 25 | 23, 24 | bitrid 192 | 
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) | 
| 26 | 25 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) | 
| 27 | 26 | anbi1d 465 | 
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))) | 
| 28 |   | brdif 4086 | 
. . . . . . 7
⊢ (𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)) | 
| 29 | 27, 28 | bitr4di 198 | 
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹 ∖ 𝐺)𝑦)) | 
| 30 | 29 | exbidv 1839 | 
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦)) | 
| 31 | 15, 22, 30 | 3bitr2rd 217 | 
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) | 
| 32 | 10, 31 | bitrid 192 | 
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) | 
| 33 | 32 | rabbi2dva 3371 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) | 
| 34 | 8, 33 | eqtr3d 2231 | 
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) |