ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bbid GIF version

Theorem necon3bbid 2387
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
Hypothesis
Ref Expression
necon3bbid.1 (𝜑 → (𝜓𝐴 = 𝐵))
Assertion
Ref Expression
necon3bbid (𝜑 → (¬ 𝜓𝐴𝐵))

Proof of Theorem necon3bbid
StepHypRef Expression
1 necon3bbid.1 . . . 4 (𝜑 → (𝜓𝐴 = 𝐵))
21bicomd 141 . . 3 (𝜑 → (𝐴 = 𝐵𝜓))
32necon3abid 2386 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝜓))
43bicomd 141 1 (𝜑 → (¬ 𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1353  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  necon3bid  2388  eldifsn  3721  prmrp  12147  nzrunit  13334  lgsne0  14478  2sqlem7  14507
  Copyright terms: Public domain W3C validator