![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3bbid | GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
2 | 1 | bicomd 141 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
3 | 2 | necon3abid 2386 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2348 |
This theorem is referenced by: necon3bid 2388 eldifsn 3721 prmrp 12147 nzrunit 13334 lgsne0 14478 2sqlem7 14507 |
Copyright terms: Public domain | W3C validator |