Proof of Theorem mulgnegnn
Step | Hyp | Ref
| Expression |
1 | | nncn 8895 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
2 | 1 | negnegd 8230 |
. . . . 5
⊢ (𝑁 ∈ ℕ → --𝑁 = 𝑁) |
3 | 2 | adantr 276 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → --𝑁 = 𝑁) |
4 | 3 | fveq2d 5508 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
5 | 4 | fveq2d 5508 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁))) |
6 | | nnnegz 9224 |
. . . 4
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
7 | | mulg1.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
8 | | eqid 2173 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
9 | | eqid 2173 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
10 | | mulgnegnn.i |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
11 | | mulg1.m |
. . . . 5
⊢ · =
(.g‘𝐺) |
12 | | eqid 2173 |
. . . . 5
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
13 | 7, 8, 9, 10, 11, 12 | mulgval 12842 |
. . . 4
⊢ ((-𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))))) |
14 | 6, 13 | sylan 283 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))))) |
15 | | nnne0 8915 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
16 | | negeq0 8182 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0)) |
17 | 16 | necon3abid 2382 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) |
18 | 1, 17 | syl 14 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) |
19 | 15, 18 | mpbid 148 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ¬
-𝑁 = 0) |
20 | 19 | iffalsed 3539 |
. . . . 5
⊢ (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) |
21 | | nnre 8894 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
22 | 21 | renegcld 8308 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℝ) |
23 | | nngt0 8912 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
24 | 21 | lt0neg2d 8444 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (0 <
𝑁 ↔ -𝑁 < 0)) |
25 | 23, 24 | mpbid 148 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → -𝑁 < 0) |
26 | | 0re 7929 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
27 | | ltnsym 8014 |
. . . . . . . 8
⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝑁 < 0
→ ¬ 0 < -𝑁)) |
28 | 26, 27 | mpan2 425 |
. . . . . . 7
⊢ (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 <
-𝑁)) |
29 | 22, 25, 28 | sylc 62 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ¬ 0
< -𝑁) |
30 | 29 | iffalsed 3539 |
. . . . 5
⊢ (𝑁 ∈ ℕ → if(0 <
-𝑁,
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) |
31 | 20, 30 | eqtrd 2206 |
. . . 4
⊢ (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) |
32 | 31 | adantr 276 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) |
33 | 14, 32 | eqtrd 2206 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) |
34 | 7, 8, 11, 12 | mulgnn 12845 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
35 | 34 | fveq2d 5508 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁))) |
36 | 5, 33, 35 | 3eqtr4d 2216 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) |