ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnegnn GIF version

Theorem mulgnegnn 13262
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnegnn.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgnegnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 8998 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21negnegd 8328 . . . . 5 (𝑁 ∈ ℕ → --𝑁 = 𝑁)
32adantr 276 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → --𝑁 = 𝑁)
43fveq2d 5562 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
54fveq2d 5562 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
6 nnnegz 9329 . . . 4 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
7 mulg1.b . . . . 5 𝐵 = (Base‘𝐺)
8 eqid 2196 . . . . 5 (+g𝐺) = (+g𝐺)
9 eqid 2196 . . . . 5 (0g𝐺) = (0g𝐺)
10 mulgnegnn.i . . . . 5 𝐼 = (invg𝐺)
11 mulg1.m . . . . 5 · = (.g𝐺)
12 eqid 2196 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
137, 8, 9, 10, 11, 12mulgval 13252 . . . 4 ((-𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
146, 13sylan 283 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
15 nnne0 9018 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
16 negeq0 8280 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0))
1716necon3abid 2406 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
181, 17syl 14 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
1915, 18mpbid 147 . . . . . 6 (𝑁 ∈ ℕ → ¬ -𝑁 = 0)
2019iffalsed 3571 . . . . 5 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))))
21 nnre 8997 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221renegcld 8406 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
23 nngt0 9015 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2421lt0neg2d 8543 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ -𝑁 < 0))
2523, 24mpbid 147 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 < 0)
26 0re 8026 . . . . . . . 8 0 ∈ ℝ
27 ltnsym 8112 . . . . . . . 8 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
2826, 27mpan2 425 . . . . . . 7 (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
2922, 25, 28sylc 62 . . . . . 6 (𝑁 ∈ ℕ → ¬ 0 < -𝑁)
3029iffalsed 3571 . . . . 5 (𝑁 ∈ ℕ → if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3120, 30eqtrd 2229 . . . 4 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3231adantr 276 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3314, 32eqtrd 2229 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
347, 8, 11, 12mulgnn 13256 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
3534fveq2d 5562 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
365, 33, 353eqtr4d 2239 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  ifcif 3561  {csn 3622   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   < clt 8061  -cneg 8198  cn 8990  cz 9326  seqcseq 10539  Basecbs 12678  +gcplusg 12755  0gc0g 12927  invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgsubcl  13266  mulgneg  13270  mulgneg2  13286  cnfldmulg  14132
  Copyright terms: Public domain W3C validator