ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnegnn GIF version

Theorem mulgnegnn 13410
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnegnn.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgnegnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 9043 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21negnegd 8373 . . . . 5 (𝑁 ∈ ℕ → --𝑁 = 𝑁)
32adantr 276 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → --𝑁 = 𝑁)
43fveq2d 5579 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
54fveq2d 5579 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
6 nnnegz 9374 . . . 4 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
7 mulg1.b . . . . 5 𝐵 = (Base‘𝐺)
8 eqid 2204 . . . . 5 (+g𝐺) = (+g𝐺)
9 eqid 2204 . . . . 5 (0g𝐺) = (0g𝐺)
10 mulgnegnn.i . . . . 5 𝐼 = (invg𝐺)
11 mulg1.m . . . . 5 · = (.g𝐺)
12 eqid 2204 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
137, 8, 9, 10, 11, 12mulgval 13400 . . . 4 ((-𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
146, 13sylan 283 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
15 nnne0 9063 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
16 negeq0 8325 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0))
1716necon3abid 2414 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
181, 17syl 14 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
1915, 18mpbid 147 . . . . . 6 (𝑁 ∈ ℕ → ¬ -𝑁 = 0)
2019iffalsed 3580 . . . . 5 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))))
21 nnre 9042 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221renegcld 8451 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
23 nngt0 9060 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2421lt0neg2d 8588 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ -𝑁 < 0))
2523, 24mpbid 147 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 < 0)
26 0re 8071 . . . . . . . 8 0 ∈ ℝ
27 ltnsym 8157 . . . . . . . 8 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
2826, 27mpan2 425 . . . . . . 7 (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
2922, 25, 28sylc 62 . . . . . 6 (𝑁 ∈ ℕ → ¬ 0 < -𝑁)
3029iffalsed 3580 . . . . 5 (𝑁 ∈ ℕ → if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3120, 30eqtrd 2237 . . . 4 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3231adantr 276 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3314, 32eqtrd 2237 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
347, 8, 11, 12mulgnn 13404 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
3534fveq2d 5579 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
365, 33, 353eqtr4d 2247 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wne 2375  ifcif 3570  {csn 3632   class class class wbr 4043   × cxp 4672  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925   < clt 8106  -cneg 8243  cn 9035  cz 9371  seqcseq 10590  Basecbs 12774  +gcplusg 12851  0gc0g 13030  invgcminusg 13275  .gcmg 13397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-minusg 13278  df-mulg 13398
This theorem is referenced by:  mulgsubcl  13414  mulgneg  13418  mulgneg2  13434  cnfldmulg  14280
  Copyright terms: Public domain W3C validator