ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr2 GIF version

Theorem cncongr2 12242
Description: The other direction of the bicondition in cncongr 12243. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))

Proof of Theorem cncongr2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll3 1040 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → 𝐶 ∈ ℤ)
2 0z 9328 . . . . . . 7 0 ∈ ℤ
3 zdceq 9392 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐶 = 0)
42, 3mpan2 425 . . . . . 6 (𝐶 ∈ ℤ → DECID 𝐶 = 0)
5 exmiddc 837 . . . . . 6 (DECID 𝐶 = 0 → (𝐶 = 0 ∨ ¬ 𝐶 = 0))
64, 5syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝐶 = 0 ∨ ¬ 𝐶 = 0))
7 df-ne 2365 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
87orbi2i 763 . . . . 5 ((𝐶 = 0 ∨ 𝐶 ≠ 0) ↔ (𝐶 = 0 ∨ ¬ 𝐶 = 0))
96, 8sylibr 134 . . . 4 (𝐶 ∈ ℤ → (𝐶 = 0 ∨ 𝐶 ≠ 0))
10 zcn 9322 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1110mul01d 8412 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 · 0) = 0)
12113ad2ant1 1020 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = 0)
13 zcn 9322 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1413mul01d 8412 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵 · 0) = 0)
15143ad2ant2 1021 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 0) = 0)
1612, 15eqtr4d 2229 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = (𝐵 · 0))
1716adantr 276 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 0) = (𝐵 · 0))
1817oveq1d 5933 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
1918adantr 276 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
20 oveq2 5926 . . . . . . . 8 (𝐶 = 0 → (𝐴 · 𝐶) = (𝐴 · 0))
2120oveq1d 5933 . . . . . . 7 (𝐶 = 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐴 · 0) mod 𝑁))
22 oveq2 5926 . . . . . . . 8 (𝐶 = 0 → (𝐵 · 𝐶) = (𝐵 · 0))
2322oveq1d 5933 . . . . . . 7 (𝐶 = 0 → ((𝐵 · 𝐶) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
2421, 23eqeq12d 2208 . . . . . 6 (𝐶 = 0 → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)))
2519, 24imbitrrid 156 . . . . 5 (𝐶 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
26 oveq2 5926 . . . . . . . . . . . 12 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐴 mod 𝑀) = (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))))
27 oveq2 5926 . . . . . . . . . . . 12 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐵 mod 𝑀) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))
2826, 27eqeq12d 2208 . . . . . . . . . . 11 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2928adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
3029adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
31 simpl 109 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
32 simp3 1001 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
33 divgcdnnr 12113 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
3431, 32, 33syl2anr 290 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
35 simpl1 1002 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ)
36 simpl2 1003 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ)
37 moddvds 11942 . . . . . . . . . 10 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3834, 35, 36, 37syl3anc 1249 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3934nnzd 9438 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
40 zsubcl 9358 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41403adant3 1019 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4241adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴𝐵) ∈ ℤ)
43 divides 11932 . . . . . . . . . 10 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
4439, 42, 43syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
4530, 38, 443bitrd 214 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
46 simpr 110 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
4739adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4847adantr 276 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4946, 48zmulcld 9445 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℤ)
5049zcnd 9440 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℂ)
5140zcnd 9440 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
52513adant3 1019 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
5352ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
5432zcnd 9440 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
5554ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℂ)
56 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
5756adantr 276 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ≠ 0)
5832ad3antrrr 492 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ)
59 0zd 9329 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 0 ∈ ℤ)
60 zapne 9391 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐶 # 0 ↔ 𝐶 ≠ 0))
6158, 59, 60syl2anc 411 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐶 # 0 ↔ 𝐶 ≠ 0))
6257, 61mpbird 167 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 # 0)
6350, 53, 55, 62mulcanap2d 8681 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
64 zcn 9322 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
65 subdir 8405 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6610, 13, 64, 65syl3an 1291 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6766ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6867eqeq2d 2205 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
6963, 68bitr3d 190 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
70 nnz 9336 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
7170adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
72 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
7372zcnd 9440 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
7473adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
7554adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝐶 ∈ ℂ)
76 simpl 109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ)
7776nnzd 9438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
7832, 77anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ))
79 gcdcl 12103 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
8078, 79syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
8180nn0cnd 9295 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
82 nnne0 9010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8382neneqd 2385 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
8483adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → ¬ 𝑁 = 0)
8584adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ 𝑁 = 0)
8685intnand 932 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
87 gcdeq0 12114 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
8878, 87syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
8988necon3abid 2403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) ≠ 0 ↔ ¬ (𝐶 = 0 ∧ 𝑁 = 0)))
9086, 89mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
9180nn0zd 9437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℤ)
92 0zd 9329 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 0 ∈ ℤ)
93 zapne 9391 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐶 gcd 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
9491, 92, 93syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
9590, 94mpbird 167 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) # 0)
9674, 75, 81, 95divassapd 8845 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) = (𝑘 · (𝐶 / (𝐶 gcd 𝑁))))
9772adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
9870, 82jca 306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
9998adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
10032, 99anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
101 3anass 984 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ↔ (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
102100, 101sylibr 134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
103 divgcdz 12108 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
104102, 103syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
10597, 104zmulcld 9445 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝐶 / (𝐶 gcd 𝑁))) ∈ ℤ)
10696, 105eqeltrd 2270 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ)
107 dvdsmul1 11956 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
10871, 106, 107syl2an2 594 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
10976nncnd 8996 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
110109adantl 277 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∈ ℂ)
111 divmulasscomap 8715 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) # 0)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
11274, 110, 75, 81, 95, 111syl32anc 1257 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
113108, 112breqtrrd 4057 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
114113exp32 365 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
115114adantrd 279 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
116115imp 124 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
117116adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
118117imp 124 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
119 breq2 4033 . . . . . . . . . . . . . 14 (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
120118, 119syl5ibcom 155 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
12169, 120sylbid 150 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
122121rexlimdva 2611 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
12331adantl 277 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
124 zmulcl 9370 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
1251243adant2 1018 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
126125adantr 276 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 𝐶) ∈ ℤ)
127 zmulcl 9370 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
1281273adant1 1017 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
129128adantr 276 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐵 · 𝐶) ∈ ℤ)
130 moddvds 11942 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
131123, 126, 129, 130syl3anc 1249 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
132131adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
133122, 132sylibrd 169 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
134133ex 115 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ≠ 0 → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
135134com23 78 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
13645, 135sylbid 150 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
137136imp 124 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
138137com12 30 . . . . 5 (𝐶 ≠ 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
13925, 138jaoi 717 . . . 4 ((𝐶 = 0 ∨ 𝐶 ≠ 0) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
1409, 139syl 14 . . 3 (𝐶 ∈ ℤ → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
1411, 140mpcom 36 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))
142141ex 115 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  0cn0 9240  cz 9317   mod cmo 10393  cdvds 11930   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  cncongr  12243
  Copyright terms: Public domain W3C validator