| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll3 1040 | 
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → 𝐶 ∈ ℤ) | 
| 2 |   | 0z 9337 | 
. . . . . . 7
⊢ 0 ∈
ℤ | 
| 3 |   | zdceq 9401 | 
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐶 = 0) | 
| 4 | 2, 3 | mpan2 425 | 
. . . . . 6
⊢ (𝐶 ∈ ℤ →
DECID 𝐶 =
0) | 
| 5 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝐶 = 0 → (𝐶 = 0 ∨ ¬ 𝐶 = 0)) | 
| 6 | 4, 5 | syl 14 | 
. . . . 5
⊢ (𝐶 ∈ ℤ → (𝐶 = 0 ∨ ¬ 𝐶 = 0)) | 
| 7 |   | df-ne 2368 | 
. . . . . 6
⊢ (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0) | 
| 8 | 7 | orbi2i 763 | 
. . . . 5
⊢ ((𝐶 = 0 ∨ 𝐶 ≠ 0) ↔ (𝐶 = 0 ∨ ¬ 𝐶 = 0)) | 
| 9 | 6, 8 | sylibr 134 | 
. . . 4
⊢ (𝐶 ∈ ℤ → (𝐶 = 0 ∨ 𝐶 ≠ 0)) | 
| 10 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) | 
| 11 | 10 | mul01d 8419 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (𝐴 · 0) =
0) | 
| 12 | 11 | 3ad2ant1 1020 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) =
0) | 
| 13 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) | 
| 14 | 13 | mul01d 8419 | 
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (𝐵 · 0) =
0) | 
| 15 | 14 | 3ad2ant2 1021 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 0) =
0) | 
| 16 | 12, 15 | eqtr4d 2232 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = (𝐵 · 0)) | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 0) = (𝐵 · 0)) | 
| 18 | 17 | oveq1d 5937 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)) | 
| 19 | 18 | adantr 276 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)) | 
| 20 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝐶 = 0 → (𝐴 · 𝐶) = (𝐴 · 0)) | 
| 21 | 20 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝐶 = 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐴 · 0) mod 𝑁)) | 
| 22 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝐶 = 0 → (𝐵 · 𝐶) = (𝐵 · 0)) | 
| 23 | 22 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝐶 = 0 → ((𝐵 · 𝐶) mod 𝑁) = ((𝐵 · 0) mod 𝑁)) | 
| 24 | 21, 23 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝐶 = 0 → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))) | 
| 25 | 19, 24 | imbitrrid 156 | 
. . . . 5
⊢ (𝐶 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 26 |   | oveq2 5930 | 
. . . . . . . . . . . 12
⊢ (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐴 mod 𝑀) = (𝐴 mod (𝑁 / (𝐶 gcd 𝑁)))) | 
| 27 |   | oveq2 5930 | 
. . . . . . . . . . . 12
⊢ (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐵 mod 𝑀) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))) | 
| 28 | 26, 27 | eqeq12d 2211 | 
. . . . . . . . . . 11
⊢ (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))) | 
| 29 | 28 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))) | 
| 30 | 29 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))) | 
| 31 |   | simpl 109 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ) | 
| 32 |   | simp3 1001 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℤ) | 
| 33 |   | divgcdnnr 12143 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ) | 
| 34 | 31, 32, 33 | syl2anr 290 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ) | 
| 35 |   | simpl1 1002 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ) | 
| 36 |   | simpl2 1003 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ) | 
| 37 |   | moddvds 11964 | 
. . . . . . . . . 10
⊢ (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴 − 𝐵))) | 
| 38 | 34, 35, 36, 37 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴 − 𝐵))) | 
| 39 | 34 | nnzd 9447 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 40 |   | zsubcl 9367 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | 
| 41 | 40 | 3adant3 1019 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | 
| 42 | 41 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 − 𝐵) ∈ ℤ) | 
| 43 |   | divides 11954 | 
. . . . . . . . . 10
⊢ (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴 − 𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵))) | 
| 44 | 39, 42, 43 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴 − 𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵))) | 
| 45 | 30, 38, 44 | 3bitrd 214 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵))) | 
| 46 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | 
| 47 | 39 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 48 | 47 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 49 | 46, 48 | zmulcld 9454 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℤ) | 
| 50 | 49 | zcnd 9449 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℂ) | 
| 51 | 40 | zcnd 9449 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) | 
| 52 | 51 | 3adant3 1019 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) | 
| 53 | 52 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) | 
| 54 | 32 | zcnd 9449 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℂ) | 
| 55 | 54 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℂ) | 
| 56 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ≠ 0) | 
| 58 | 32 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ) | 
| 59 |   | 0zd 9338 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 0 ∈
ℤ) | 
| 60 |   | zapne 9400 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℤ ∧ 0 ∈
ℤ) → (𝐶 # 0
↔ 𝐶 ≠
0)) | 
| 61 | 58, 59, 60 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐶 # 0 ↔ 𝐶 ≠ 0)) | 
| 62 | 57, 61 | mpbird 167 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 # 0) | 
| 63 | 50, 53, 55, 62 | mulcanap2d 8689 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 − 𝐵) · 𝐶) ↔ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵))) | 
| 64 |   | zcn 9331 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) | 
| 65 |   | subdir 8412 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | 
| 66 | 10, 13, 64, 65 | syl3an 1291 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | 
| 67 | 66 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | 
| 68 | 67 | eqeq2d 2208 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 − 𝐵) · 𝐶) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 69 | 63, 68 | bitr3d 190 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 70 |   | nnz 9345 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 71 | 70 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈
ℤ) | 
| 72 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈
ℤ) | 
| 73 | 72 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈
ℂ) | 
| 74 | 73 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈
ℂ) | 
| 75 | 54 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝐶 ∈
ℂ) | 
| 76 |   | simpl 109 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈
ℕ) | 
| 77 | 76 | nnzd 9447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈
ℤ) | 
| 78 | 32, 77 | anim12i 338 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈
ℤ)) | 
| 79 |   | gcdcl 12133 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 gcd 𝑁) ∈
ℕ0) | 
| 80 | 78, 79 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈
ℕ0) | 
| 81 | 80 | nn0cnd 9304 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ) | 
| 82 |   | nnne0 9018 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | 
| 83 | 82 | neneqd 2388 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ → ¬
𝑁 = 0) | 
| 84 | 83 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → ¬
𝑁 = 0) | 
| 85 | 84 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬
𝑁 = 0) | 
| 86 | 85 | intnand 932 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬
(𝐶 = 0 ∧ 𝑁 = 0)) | 
| 87 |   | gcdeq0 12144 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0))) | 
| 88 | 78, 87 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0))) | 
| 89 | 88 | necon3abid 2406 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) ≠ 0 ↔ ¬ (𝐶 = 0 ∧ 𝑁 = 0))) | 
| 90 | 86, 89 | mpbird 167 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0) | 
| 91 | 80 | nn0zd 9446 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℤ) | 
| 92 |   | 0zd 9338 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 0
∈ ℤ) | 
| 93 |   | zapne 9400 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐶 gcd 𝑁) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0)) | 
| 94 | 91, 92, 93 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0)) | 
| 95 | 90, 94 | mpbird 167 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) # 0) | 
| 96 | 74, 75, 81, 95 | divassapd 8853 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) = (𝑘 · (𝐶 / (𝐶 gcd 𝑁)))) | 
| 97 | 72 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈
ℤ) | 
| 98 | 70, 82 | jca 306 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) | 
| 99 | 98 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) | 
| 100 | 32, 99 | anim12i 338 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))) | 
| 101 |   | 3anass 984 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ↔ (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))) | 
| 102 | 100, 101 | sylibr 134 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) | 
| 103 |   | divgcdz 12138 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 104 | 102, 103 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 105 | 97, 104 | zmulcld 9454 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝐶 / (𝐶 gcd 𝑁))) ∈ ℤ) | 
| 106 | 96, 105 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) | 
| 107 |   | dvdsmul1 11978 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℤ ∧ ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)))) | 
| 108 | 71, 106, 107 | syl2an2 594 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)))) | 
| 109 | 76 | nncnd 9004 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈
ℂ) | 
| 110 | 109 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∈
ℂ) | 
| 111 |   | divmulasscomap 8723 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) # 0)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)))) | 
| 112 | 74, 110, 75, 81, 95, 111 | syl32anc 1257 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)))) | 
| 113 | 108, 112 | breqtrrd 4061 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)) | 
| 114 | 113 | exp32 365 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))) | 
| 115 | 114 | adantrd 279 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))) | 
| 116 | 115 | imp 124 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))) | 
| 117 | 116 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))) | 
| 118 | 117 | imp 124 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)) | 
| 119 |   | breq2 4037 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 120 | 118, 119 | syl5ibcom 155 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 121 | 69, 120 | sylbid 150 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ ∧ 𝐶 ∈
ℤ) ∧ (𝑁 ∈
ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 122 | 121 | rexlimdva 2614 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 123 | 31 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ) | 
| 124 |   | zmulcl 9379 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ) | 
| 125 | 124 | 3adant2 1018 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ) | 
| 126 | 125 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 𝐶) ∈ ℤ) | 
| 127 |   | zmulcl 9379 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ) | 
| 128 | 127 | 3adant1 1017 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ) | 
| 129 | 128 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐵 · 𝐶) ∈ ℤ) | 
| 130 |   | moddvds 11964 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 131 | 123, 126,
129, 130 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 132 | 131 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶)))) | 
| 133 | 122, 132 | sylibrd 169 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 134 | 133 | ex 115 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ≠ 0 → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))) | 
| 135 | 134 | com23 78 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴 − 𝐵) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))) | 
| 136 | 45, 135 | sylbid 150 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))) | 
| 137 | 136 | imp 124 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 138 | 137 | com12 30 | 
. . . . 5
⊢ (𝐶 ≠ 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 139 | 25, 138 | jaoi 717 | 
. . . 4
⊢ ((𝐶 = 0 ∨ 𝐶 ≠ 0) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 140 | 9, 139 | syl 14 | 
. . 3
⊢ (𝐶 ∈ ℤ → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | 
| 141 | 1, 140 | mpcom 36 | 
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)) | 
| 142 | 141 | ex 115 | 
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) |