ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 GIF version

Theorem expnegap0 10142
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 8831 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 8606 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 273 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 8586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 273 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 7936 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2306 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 146 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 3431 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))))
10 nnnn0 8836 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 273 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 8855 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 14 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 8883 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 8144 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 638 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 3431 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))
185negnegd 7935 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 5357 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2019oveq2d 5722 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
219, 17, 203eqtrd 2136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
2221adantlr 464 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
23 simp1 949 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
24 simp3 951 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2524nnzd 9024 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2625znegcld 9027 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
27 simp2 950 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 # 0)
2827orcd 693 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴 # 0 ∨ 0 ≤ -𝑁))
29 exp3val 10136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ -𝑁)) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
3023, 26, 28, 29syl3anc 1184 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
31303expa 1149 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
32 expnnval 10137 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
3332oveq2d 5722 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3433adantlr 464 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3522, 31, 343eqtr4d 2142 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
36 1div1e1 8325 . . . . . . 7 (1 / 1) = 1
3736eqcomi 2104 . . . . . 6 1 = (1 / 1)
38 negeq 7826 . . . . . . . . 9 (𝑁 = 0 → -𝑁 = -0)
39 neg0 7879 . . . . . . . . 9 -0 = 0
4038, 39syl6eq 2148 . . . . . . . 8 (𝑁 = 0 → -𝑁 = 0)
4140oveq2d 5722 . . . . . . 7 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
42 exp0 10138 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
4341, 42sylan9eqr 2154 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
44 oveq2 5714 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
4544, 42sylan9eqr 2154 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
4645oveq2d 5722 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
4737, 43, 463eqtr4a 2158 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4847adantlr 464 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4935, 48jaodan 752 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
501, 49sylan2b 283 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
51503impa 1144 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 670  w3a 930   = wceq 1299  wcel 1448  wne 2267  ifcif 3421  {csn 3474   class class class wbr 3875   × cxp 4475  cfv 5059  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   · cmul 7505   < clt 7672  cle 7673  -cneg 7805   # cap 8209   / cdiv 8293  cn 8578  0cn0 8829  cz 8906  seqcseq 10059  cexp 10133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060  df-exp 10134
This theorem is referenced by:  expineg2  10143  expn1ap0  10144  expnegzap  10168  efexp  11186  ex-exp  12542
  Copyright terms: Public domain W3C validator