ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 GIF version

Theorem expnegap0 10621
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9245 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 9012 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 8992 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 277 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 8324 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2403 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 147 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 3568 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))))
10 nnnn0 9250 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 9269 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 14 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 9297 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 8536 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 673 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 3568 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))
185negnegd 8323 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 5559 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2019oveq2d 5935 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
219, 17, 203eqtrd 2230 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
2221adantlr 477 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
23 simp1 999 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
24 simp3 1001 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2524nnzd 9441 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2625znegcld 9444 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
27 simp2 1000 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 # 0)
2827orcd 734 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴 # 0 ∨ 0 ≤ -𝑁))
29 exp3val 10615 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ -𝑁)) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
3023, 26, 28, 29syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
31303expa 1205 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
32 expnnval 10616 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
3332oveq2d 5935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3433adantlr 477 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3522, 31, 343eqtr4d 2236 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
36 1div1e1 8725 . . . . . . 7 (1 / 1) = 1
3736eqcomi 2197 . . . . . 6 1 = (1 / 1)
38 negeq 8214 . . . . . . . . 9 (𝑁 = 0 → -𝑁 = -0)
39 neg0 8267 . . . . . . . . 9 -0 = 0
4038, 39eqtrdi 2242 . . . . . . . 8 (𝑁 = 0 → -𝑁 = 0)
4140oveq2d 5935 . . . . . . 7 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
42 exp0 10617 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
4341, 42sylan9eqr 2248 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
44 oveq2 5927 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
4544, 42sylan9eqr 2248 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
4645oveq2d 5935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
4737, 43, 463eqtr4a 2252 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4847adantlr 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4935, 48jaodan 798 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
501, 49sylan2b 287 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
51503impa 1196 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wne 2364  ifcif 3558  {csn 3619   class class class wbr 4030   × cxp 4658  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   · cmul 7879   < clt 8056  cle 8057  -cneg 8193   # cap 8602   / cdiv 8693  cn 8984  0cn0 9243  cz 9320  seqcseq 10521  cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  expineg2  10622  expn1ap0  10623  expnegzap  10647  efexp  11828  pcexp  12450  ex-exp  15289
  Copyright terms: Public domain W3C validator