ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 GIF version

Theorem expnegap0 10658
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9270 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 9037 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 9017 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 277 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 8348 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2406 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 147 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 3572 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))))
10 nnnn0 9275 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 9294 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 14 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 9322 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 8561 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 673 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 3572 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))
185negnegd 8347 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 5565 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2019oveq2d 5941 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
219, 17, 203eqtrd 2233 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
2221adantlr 477 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
23 simp1 999 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
24 simp3 1001 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2524nnzd 9466 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2625znegcld 9469 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
27 simp2 1000 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → 𝐴 # 0)
2827orcd 734 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴 # 0 ∨ 0 ≤ -𝑁))
29 exp3val 10652 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ -𝑁)) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
3023, 26, 28, 29syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
31303expa 1205 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
32 expnnval 10653 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
3332oveq2d 5941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3433adantlr 477 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
3522, 31, 343eqtr4d 2239 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
36 1div1e1 8750 . . . . . . 7 (1 / 1) = 1
3736eqcomi 2200 . . . . . 6 1 = (1 / 1)
38 negeq 8238 . . . . . . . . 9 (𝑁 = 0 → -𝑁 = -0)
39 neg0 8291 . . . . . . . . 9 -0 = 0
4038, 39eqtrdi 2245 . . . . . . . 8 (𝑁 = 0 → -𝑁 = 0)
4140oveq2d 5941 . . . . . . 7 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
42 exp0 10654 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
4341, 42sylan9eqr 2251 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
44 oveq2 5933 . . . . . . . 8 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
4544, 42sylan9eqr 2251 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
4645oveq2d 5941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
4737, 43, 463eqtr4a 2255 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4847adantlr 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4935, 48jaodan 798 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
501, 49sylan2b 287 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
51503impa 1196 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2167  wne 2367  ifcif 3562  {csn 3623   class class class wbr 4034   × cxp 4662  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898  1c1 7899   · cmul 7903   < clt 8080  cle 8081  -cneg 8217   # cap 8627   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  seqcseq 10558  cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-seqfrec 10559  df-exp 10650
This theorem is referenced by:  expineg2  10659  expn1ap0  10660  expnegzap  10684  efexp  11866  pcexp  12505  ex-exp  15481
  Copyright terms: Public domain W3C validator