ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 GIF version

Theorem expnegap0 10527
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9177 . . 3 (๐‘ โˆˆ โ„•0 โ†” (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
2 nnne0 8946 . . . . . . . . . 10 (๐‘ โˆˆ โ„• โ†’ ๐‘ โ‰  0)
32adantl 277 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โ‰  0)
4 nncn 8926 . . . . . . . . . . . 12 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„‚)
54adantl 277 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„‚)
65negeq0d 8259 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ = 0 โ†” -๐‘ = 0))
76necon3abid 2386 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ โ‰  0 โ†” ยฌ -๐‘ = 0))
83, 7mpbid 147 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ยฌ -๐‘ = 0)
98iffalsed 3544 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))) = if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘))))
10 nnnn0 9182 . . . . . . . . . . 11 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„•0)
1110adantl 277 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„•0)
12 nn0nlt0 9201 . . . . . . . . . 10 (๐‘ โˆˆ โ„•0 โ†’ ยฌ ๐‘ < 0)
1311, 12syl 14 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ยฌ ๐‘ < 0)
1411nn0red 9229 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„)
1514lt0neg1d 8471 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ < 0 โ†” 0 < -๐‘))
1613, 15mtbid 672 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ยฌ 0 < -๐‘)
1716iffalsed 3544 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘))) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))
185negnegd 8258 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ --๐‘ = ๐‘)
1918fveq2d 5519 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘) = (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘))
2019oveq2d 5890 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘)))
219, 17, 203eqtrd 2214 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘)))
2221adantlr 477 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ โˆˆ โ„•) โ†’ if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘)))
23 simp1 997 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
24 simp3 999 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„•)
2524nnzd 9373 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„ค)
2625znegcld 9376 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ -๐‘ โˆˆ โ„ค)
27 simp2 998 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ ๐ด # 0)
2827orcd 733 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ด # 0 โˆจ 0 โ‰ค -๐‘))
29 exp3val 10521 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„ค โˆง (๐ด # 0 โˆจ 0 โ‰ค -๐‘)) โ†’ (๐ดโ†‘-๐‘) = if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))))
3023, 26, 28, 29syl3anc 1238 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘-๐‘) = if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))))
31303expa 1203 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘-๐‘) = if(-๐‘ = 0, 1, if(0 < -๐‘, (seq1( ยท , (โ„• ร— {๐ด}))โ€˜-๐‘), (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜--๐‘)))))
32 expnnval 10522 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘๐‘) = (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘))
3332oveq2d 5890 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (1 / (๐ดโ†‘๐‘)) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘)))
3433adantlr 477 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ โˆˆ โ„•) โ†’ (1 / (๐ดโ†‘๐‘)) = (1 / (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘)))
3522, 31, 343eqtr4d 2220 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
36 1div1e1 8660 . . . . . . 7 (1 / 1) = 1
3736eqcomi 2181 . . . . . 6 1 = (1 / 1)
38 negeq 8149 . . . . . . . . 9 (๐‘ = 0 โ†’ -๐‘ = -0)
39 neg0 8202 . . . . . . . . 9 -0 = 0
4038, 39eqtrdi 2226 . . . . . . . 8 (๐‘ = 0 โ†’ -๐‘ = 0)
4140oveq2d 5890 . . . . . . 7 (๐‘ = 0 โ†’ (๐ดโ†‘-๐‘) = (๐ดโ†‘0))
42 exp0 10523 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘0) = 1)
4341, 42sylan9eqr 2232 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘-๐‘) = 1)
44 oveq2 5882 . . . . . . . 8 (๐‘ = 0 โ†’ (๐ดโ†‘๐‘) = (๐ดโ†‘0))
4544, 42sylan9eqr 2232 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘๐‘) = 1)
4645oveq2d 5890 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (1 / (๐ดโ†‘๐‘)) = (1 / 1))
4737, 43, 463eqtr4a 2236 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
4847adantlr 477 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ = 0) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
4935, 48jaodan 797 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0)) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
501, 49sylan2b 287 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
51503impa 1194 1 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘) = (1 / (๐ดโ†‘๐‘)))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โˆจ wo 708   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347  ifcif 3534  {csn 3592   class class class wbr 4003   ร— cxp 4624  โ€˜cfv 5216  (class class class)co 5874  โ„‚cc 7808  0cc0 7810  1c1 7811   ยท cmul 7815   < clt 7991   โ‰ค cle 7992  -cneg 8128   # cap 8537   / cdiv 8628  โ„•cn 8918  โ„•0cn0 9175  โ„คcz 9252  seqcseq 10444  โ†‘cexp 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-seqfrec 10445  df-exp 10519
This theorem is referenced by:  expineg2  10528  expn1ap0  10529  expnegzap  10553  efexp  11689  pcexp  12308  ex-exp  14415
  Copyright terms: Public domain W3C validator