| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necon3bi | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) | 
| Ref | Expression | 
|---|---|
| necon3bi.1 | ⊢ (𝐴 = 𝐵 → 𝜑) | 
| Ref | Expression | 
|---|---|
| necon3bi | ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | necon3bi.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 2 | 1 | con3i 633 | . 2 ⊢ (¬ 𝜑 → ¬ 𝐴 = 𝐵) | 
| 3 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: pwne 4193 sucpw1ne3 7299 nltpnft 9889 ngtmnft 9892 | 
| Copyright terms: Public domain | W3C validator |