ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwne GIF version

Theorem pwne 4146
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 3795. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne (𝐴𝑉 → 𝒫 𝐴𝐴)

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 4145 . 2 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
2 eqimss 3201 . . 3 (𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴)
32necon3bi 2390 . 2 (¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴)
41, 3syl 14 1 (𝐴𝑉 → 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2141  wne 2340  wss 3121  𝒫 cpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  pnfnemnf  7974
  Copyright terms: Public domain W3C validator