Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwne | GIF version |
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 3804. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 4154 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | |
2 | eqimss 3207 | . . 3 ⊢ (𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴) | |
3 | 2 | necon3bi 2395 | . 2 ⊢ (¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2146 ≠ wne 2345 ⊆ wss 3127 𝒫 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 |
This theorem is referenced by: pnfnemnf 7986 |
Copyright terms: Public domain | W3C validator |