![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwne | GIF version |
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 3652. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 3994 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | |
2 | eqimss 3078 | . . 3 ⊢ (𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴) | |
3 | 2 | necon3bi 2305 | . 2 ⊢ (¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1438 ≠ wne 2255 ⊆ wss 2999 𝒫 cpw 3429 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-rab 2368 df-v 2621 df-in 3005 df-ss 3012 df-pw 3431 |
This theorem is referenced by: pnfnemnf 7540 |
Copyright terms: Public domain | W3C validator |