| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3ai | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 635 | . 2 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝜑) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: nelsn 3701 disjsn2 3729 0nelxp 4747 fvunsng 5837 map0b 6842 difinfsnlem 7274 hashprg 11038 gcd1 12516 gcdzeq 12551 phimullem 12755 pcgcd1 12859 pc2dvds 12861 pockthlem 12887 znrrg 14632 mpodvdsmulf1o 15672 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |