| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3ai | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2381 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 635 | . 2 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝜑) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2381 |
| This theorem is referenced by: nelsn 3681 disjsn2 3709 0nelxp 4724 fvunsng 5806 map0b 6804 difinfsnlem 7234 hashprg 10997 gcd1 12474 gcdzeq 12509 phimullem 12713 pcgcd1 12817 pc2dvds 12819 pockthlem 12845 znrrg 14589 mpodvdsmulf1o 15629 2sqlem8 15767 |
| Copyright terms: Public domain | W3C validator |