ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai GIF version

Theorem necon3ai 2413
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3ai (𝐴𝐵 → ¬ 𝜑)

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2365 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3ai.1 . . 3 (𝜑𝐴 = 𝐵)
32con3i 633 . 2 𝐴 = 𝐵 → ¬ 𝜑)
41, 3sylbi 121 1 (𝐴𝐵 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  nelsn  3653  disjsn2  3681  0nelxp  4687  fvunsng  5752  map0b  6741  difinfsnlem  7158  hashprg  10879  gcd1  12124  gcdzeq  12159  phimullem  12363  pcgcd1  12466  pc2dvds  12468  pockthlem  12494  znrrg  14148  2sqlem8  15210
  Copyright terms: Public domain W3C validator