| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3ai | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 633 | . 2 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝜑) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: nelsn 3658 disjsn2 3686 0nelxp 4692 fvunsng 5759 map0b 6755 difinfsnlem 7174 hashprg 10919 gcd1 12181 gcdzeq 12216 phimullem 12420 pcgcd1 12524 pc2dvds 12526 pockthlem 12552 znrrg 14294 mpodvdsmulf1o 15312 2sqlem8 15450 |
| Copyright terms: Public domain | W3C validator |