ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai GIF version

Theorem necon3ai 2416
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3ai (𝐴𝐵 → ¬ 𝜑)

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2368 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3ai.1 . . 3 (𝜑𝐴 = 𝐵)
32con3i 633 . 2 𝐴 = 𝐵 → ¬ 𝜑)
41, 3sylbi 121 1 (𝐴𝐵 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  nelsn  3657  disjsn2  3685  0nelxp  4691  fvunsng  5756  map0b  6746  difinfsnlem  7165  hashprg  10900  gcd1  12154  gcdzeq  12189  phimullem  12393  pcgcd1  12497  pc2dvds  12499  pockthlem  12525  znrrg  14216  mpodvdsmulf1o  15226  2sqlem8  15364
  Copyright terms: Public domain W3C validator