ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai GIF version

Theorem necon3ai 2426
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3ai (𝐴𝐵 → ¬ 𝜑)

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2378 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3ai.1 . . 3 (𝜑𝐴 = 𝐵)
32con3i 633 . 2 𝐴 = 𝐵 → ¬ 𝜑)
41, 3sylbi 121 1 (𝐴𝐵 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2378
This theorem is referenced by:  nelsn  3669  disjsn2  3697  0nelxp  4707  fvunsng  5785  map0b  6781  difinfsnlem  7208  hashprg  10960  gcd1  12352  gcdzeq  12387  phimullem  12591  pcgcd1  12695  pc2dvds  12697  pockthlem  12723  znrrg  14466  mpodvdsmulf1o  15506  2sqlem8  15644
  Copyright terms: Public domain W3C validator