| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necon3ai | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) | 
| Ref | Expression | 
|---|---|
| necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 633 | . 2 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝜑) | 
| 4 | 1, 3 | sylbi 121 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: nelsn 3657 disjsn2 3685 0nelxp 4691 fvunsng 5756 map0b 6746 difinfsnlem 7165 hashprg 10900 gcd1 12154 gcdzeq 12189 phimullem 12393 pcgcd1 12497 pc2dvds 12499 pockthlem 12525 znrrg 14216 mpodvdsmulf1o 15226 2sqlem8 15364 | 
| Copyright terms: Public domain | W3C validator |