ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai GIF version

Theorem necon3ai 2416
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3ai (𝐴𝐵 → ¬ 𝜑)

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2368 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3ai.1 . . 3 (𝜑𝐴 = 𝐵)
32con3i 633 . 2 𝐴 = 𝐵 → ¬ 𝜑)
41, 3sylbi 121 1 (𝐴𝐵 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  nelsn  3658  disjsn2  3686  0nelxp  4692  fvunsng  5759  map0b  6755  difinfsnlem  7174  hashprg  10917  gcd1  12179  gcdzeq  12214  phimullem  12418  pcgcd1  12522  pc2dvds  12524  pockthlem  12550  znrrg  14292  mpodvdsmulf1o  15310  2sqlem8  15448
  Copyright terms: Public domain W3C validator