Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3ai | GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3ai.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3ai | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2341 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3ai.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | con3i 627 | . 2 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝜑) |
4 | 1, 3 | sylbi 120 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: nelsn 3618 disjsn2 3646 0nelxp 4639 fvunsng 5690 map0b 6665 difinfsnlem 7076 hashprg 10743 gcd1 11942 gcdzeq 11977 phimullem 12179 pcgcd1 12281 pc2dvds 12283 pockthlem 12308 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |