ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1ne3 GIF version

Theorem sucpw1ne3 7344
Description: Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1ne3 EXMID → suc 𝒫 1o ≠ 3o)

Proof of Theorem sucpw1ne3
StepHypRef Expression
1 pw1nel3 7343 . 2 EXMID → ¬ 𝒫 1o ∈ 3o)
2 1oex 6510 . . . . . 6 1o ∈ V
32pwex 4227 . . . . 5 𝒫 1o ∈ V
43sucid 4464 . . . 4 𝒫 1o ∈ suc 𝒫 1o
5 eleq2 2269 . . . 4 (suc 𝒫 1o = 3o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 3o))
64, 5mpbii 148 . . 3 (suc 𝒫 1o = 3o → 𝒫 1o ∈ 3o)
76necon3bi 2426 . 2 (¬ 𝒫 1o ∈ 3o → suc 𝒫 1o ≠ 3o)
81, 7syl 14 1 EXMID → suc 𝒫 1o ≠ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2176  wne 2376  𝒫 cpw 3616  EXMIDwem 4238  suc csuc 4412  1oc1o 6495  3oc3o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415  df-suc 4418  df-1o 6502  df-2o 6503  df-3o 6504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator