ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1ne3 GIF version

Theorem sucpw1ne3 7150
Description: Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1ne3 EXMID → suc 𝒫 1o ≠ 3o)

Proof of Theorem sucpw1ne3
StepHypRef Expression
1 pw1nel3 7149 . 2 EXMID → ¬ 𝒫 1o ∈ 3o)
2 1oex 6365 . . . . . 6 1o ∈ V
32pwex 4143 . . . . 5 𝒫 1o ∈ V
43sucid 4376 . . . 4 𝒫 1o ∈ suc 𝒫 1o
5 eleq2 2221 . . . 4 (suc 𝒫 1o = 3o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 3o))
64, 5mpbii 147 . . 3 (suc 𝒫 1o = 3o → 𝒫 1o ∈ 3o)
76necon3bi 2377 . 2 (¬ 𝒫 1o ∈ 3o → suc 𝒫 1o ≠ 3o)
81, 7syl 14 1 EXMID → suc 𝒫 1o ≠ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1335  wcel 2128  wne 2327  𝒫 cpw 3543  EXMIDwem 4154  suc csuc 4324  1oc1o 6350  3oc3o 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-exmid 4155  df-iord 4325  df-on 4327  df-suc 4330  df-1o 6357  df-2o 6358  df-3o 6359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator