![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucpw1ne3 | GIF version |
Description: Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
sucpw1ne3 | ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1nel3 7291 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
2 | 1oex 6477 | . . . . . 6 ⊢ 1o ∈ V | |
3 | 2 | pwex 4212 | . . . . 5 ⊢ 𝒫 1o ∈ V |
4 | 3 | sucid 4448 | . . . 4 ⊢ 𝒫 1o ∈ suc 𝒫 1o |
5 | eleq2 2257 | . . . 4 ⊢ (suc 𝒫 1o = 3o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 3o)) | |
6 | 4, 5 | mpbii 148 | . . 3 ⊢ (suc 𝒫 1o = 3o → 𝒫 1o ∈ 3o) |
7 | 6 | necon3bi 2414 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o → suc 𝒫 1o ≠ 3o) |
8 | 1, 7 | syl 14 | 1 ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 𝒫 cpw 3601 EXMIDwem 4223 suc csuc 4396 1oc1o 6462 3oc3o 6464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-exmid 4224 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 df-2o 6470 df-3o 6471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |