| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1ne3 | GIF version | ||
| Description: Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| sucpw1ne3 | ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1nel3 7377 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
| 2 | 1oex 6533 | . . . . . 6 ⊢ 1o ∈ V | |
| 3 | 2 | pwex 4243 | . . . . 5 ⊢ 𝒫 1o ∈ V |
| 4 | 3 | sucid 4482 | . . . 4 ⊢ 𝒫 1o ∈ suc 𝒫 1o |
| 5 | eleq2 2271 | . . . 4 ⊢ (suc 𝒫 1o = 3o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 3o)) | |
| 6 | 4, 5 | mpbii 148 | . . 3 ⊢ (suc 𝒫 1o = 3o → 𝒫 1o ∈ 3o) |
| 7 | 6 | necon3bi 2428 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o → suc 𝒫 1o ≠ 3o) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 𝒫 cpw 3626 EXMIDwem 4254 suc csuc 4430 1oc1o 6518 3oc3o 6520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-exmid 4255 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 df-2o 6526 df-3o 6527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |