| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1ne3 | GIF version | ||
| Description: Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| sucpw1ne3 | ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1nel3 7342 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
| 2 | 1oex 6509 | . . . . . 6 ⊢ 1o ∈ V | |
| 3 | 2 | pwex 4226 | . . . . 5 ⊢ 𝒫 1o ∈ V |
| 4 | 3 | sucid 4463 | . . . 4 ⊢ 𝒫 1o ∈ suc 𝒫 1o |
| 5 | eleq2 2268 | . . . 4 ⊢ (suc 𝒫 1o = 3o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 3o)) | |
| 6 | 4, 5 | mpbii 148 | . . 3 ⊢ (suc 𝒫 1o = 3o → 𝒫 1o ∈ 3o) |
| 7 | 6 | necon3bi 2425 | . 2 ⊢ (¬ 𝒫 1o ∈ 3o → suc 𝒫 1o ≠ 3o) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 𝒫 cpw 3615 EXMIDwem 4237 suc csuc 4411 1oc1o 6494 3oc3o 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-exmid 4238 df-iord 4412 df-on 4414 df-suc 4417 df-1o 6501 df-2o 6502 df-3o 6503 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |