ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltpnft GIF version

Theorem nltpnft 9597
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 elxr 9563 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 7813 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2329 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
4 ltpnf 9567 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
5 notnot 618 . . . . 5 (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞)
73, 62falsed 691 . . 3 (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
8 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
9 pnfxr 7818 . . . . . 6 +∞ ∈ ℝ*
10 xrltnr 9566 . . . . . 6 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . 5 ¬ +∞ < +∞
12 breq1 3932 . . . . 5 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 664 . . . 4 (𝐴 = +∞ → ¬ 𝐴 < +∞)
148, 132thd 174 . . 3 (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
15 mnfnepnf 7821 . . . . . 6 -∞ ≠ +∞
1615neii 2310 . . . . 5 ¬ -∞ = +∞
17 eqeq1 2146 . . . . 5 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1816, 17mtbiri 664 . . . 4 (𝐴 = -∞ → ¬ 𝐴 = +∞)
19 mnfltpnf 9571 . . . . . . 7 -∞ < +∞
20 breq1 3932 . . . . . . 7 (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞))
2119, 20mpbiri 167 . . . . . 6 (𝐴 = -∞ → 𝐴 < +∞)
2221necon3bi 2358 . . . . 5 𝐴 < +∞ → 𝐴 ≠ -∞)
2322necon2bi 2363 . . . 4 (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞)
2418, 232falsed 691 . . 3 (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
257, 14, 243jaoi 1281 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
261, 25sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3o 961   = wceq 1331  wcel 1480   class class class wbr 3929  cr 7619  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805
This theorem is referenced by:  npnflt  9598  xgepnf  9599  xrmaxiflemlub  11017
  Copyright terms: Public domain W3C validator