ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltpnft GIF version

Theorem nltpnft 9771
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 elxr 9733 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 7967 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2361 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
4 ltpnf 9737 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
5 notnot 624 . . . . 5 (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞)
73, 62falsed 697 . . 3 (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
8 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
9 pnfxr 7972 . . . . . 6 +∞ ∈ ℝ*
10 xrltnr 9736 . . . . . 6 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . 5 ¬ +∞ < +∞
12 breq1 3992 . . . . 5 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 670 . . . 4 (𝐴 = +∞ → ¬ 𝐴 < +∞)
148, 132thd 174 . . 3 (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
15 mnfnepnf 7975 . . . . . 6 -∞ ≠ +∞
1615neii 2342 . . . . 5 ¬ -∞ = +∞
17 eqeq1 2177 . . . . 5 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1816, 17mtbiri 670 . . . 4 (𝐴 = -∞ → ¬ 𝐴 = +∞)
19 mnfltpnf 9742 . . . . . . 7 -∞ < +∞
20 breq1 3992 . . . . . . 7 (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞))
2119, 20mpbiri 167 . . . . . 6 (𝐴 = -∞ → 𝐴 < +∞)
2221necon3bi 2390 . . . . 5 𝐴 < +∞ → 𝐴 ≠ -∞)
2322necon2bi 2395 . . . 4 (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞)
2418, 232falsed 697 . . 3 (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
257, 14, 243jaoi 1298 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
261, 25sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3o 972   = wceq 1348  wcel 2141   class class class wbr 3989  cr 7773  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  npnflt  9772  xgepnf  9773  xrmaxiflemlub  11211
  Copyright terms: Public domain W3C validator