| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltpnft | GIF version | ||
| Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9905 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renepnf 8127 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 2 | neneqd 2398 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
| 4 | ltpnf 9909 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 5 | notnot 630 | . . . . 5 ⊢ (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞) |
| 7 | 3, 6 | 2falsed 704 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 8 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 9 | pnfxr 8132 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | xrltnr 9908 | . . . . . 6 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ +∞ < +∞ |
| 12 | breq1 4050 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 13 | 11, 12 | mtbiri 677 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
| 14 | 8, 13 | 2thd 175 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 15 | mnfnepnf 8135 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
| 16 | 15 | neii 2379 | . . . . 5 ⊢ ¬ -∞ = +∞ |
| 17 | eqeq1 2213 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
| 18 | 16, 17 | mtbiri 677 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
| 19 | mnfltpnf 9914 | . . . . . . 7 ⊢ -∞ < +∞ | |
| 20 | breq1 4050 | . . . . . . 7 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
| 21 | 19, 20 | mpbiri 168 | . . . . . 6 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
| 22 | 21 | necon3bi 2427 | . . . . 5 ⊢ (¬ 𝐴 < +∞ → 𝐴 ≠ -∞) |
| 23 | 22 | necon2bi 2432 | . . . 4 ⊢ (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞) |
| 24 | 18, 23 | 2falsed 704 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 25 | 7, 14, 24 | 3jaoi 1316 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ℝcr 7931 +∞cpnf 8111 -∞cmnf 8112 ℝ*cxr 8113 < clt 8114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-pre-ltirr 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 |
| This theorem is referenced by: npnflt 9944 xgepnf 9945 xrmaxiflemlub 11603 |
| Copyright terms: Public domain | W3C validator |