| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nltpnft | GIF version | ||
| Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxr 9851 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | renepnf 8074 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 2 | neneqd 2388 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) | 
| 4 | ltpnf 9855 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 5 | notnot 630 | . . . . 5 ⊢ (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞) | 
| 7 | 3, 6 | 2falsed 703 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| 8 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 9 | pnfxr 8079 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | xrltnr 9854 | . . . . . 6 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ +∞ < +∞ | 
| 12 | breq1 4036 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
| 13 | 11, 12 | mtbiri 676 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) | 
| 14 | 8, 13 | 2thd 175 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| 15 | mnfnepnf 8082 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
| 16 | 15 | neii 2369 | . . . . 5 ⊢ ¬ -∞ = +∞ | 
| 17 | eqeq1 2203 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
| 18 | 16, 17 | mtbiri 676 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) | 
| 19 | mnfltpnf 9860 | . . . . . . 7 ⊢ -∞ < +∞ | |
| 20 | breq1 4036 | . . . . . . 7 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
| 21 | 19, 20 | mpbiri 168 | . . . . . 6 ⊢ (𝐴 = -∞ → 𝐴 < +∞) | 
| 22 | 21 | necon3bi 2417 | . . . . 5 ⊢ (¬ 𝐴 < +∞ → 𝐴 ≠ -∞) | 
| 23 | 22 | necon2bi 2422 | . . . 4 ⊢ (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞) | 
| 24 | 18, 23 | 2falsed 703 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| 25 | 7, 14, 24 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| 26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 < clt 8061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 | 
| This theorem is referenced by: npnflt 9890 xgepnf 9891 xrmaxiflemlub 11413 | 
| Copyright terms: Public domain | W3C validator |