ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltpnft GIF version

Theorem nltpnft 9978
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))

Proof of Theorem nltpnft
StepHypRef Expression
1 elxr 9940 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renepnf 8162 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
32neneqd 2401 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = +∞)
4 ltpnf 9944 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
5 notnot 632 . . . . 5 (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞)
73, 62falsed 706 . . 3 (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
8 id 19 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
9 pnfxr 8167 . . . . . 6 +∞ ∈ ℝ*
10 xrltnr 9943 . . . . . 6 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
119, 10ax-mp 5 . . . . 5 ¬ +∞ < +∞
12 breq1 4065 . . . . 5 (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞))
1311, 12mtbiri 679 . . . 4 (𝐴 = +∞ → ¬ 𝐴 < +∞)
148, 132thd 175 . . 3 (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
15 mnfnepnf 8170 . . . . . 6 -∞ ≠ +∞
1615neii 2382 . . . . 5 ¬ -∞ = +∞
17 eqeq1 2216 . . . . 5 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
1816, 17mtbiri 679 . . . 4 (𝐴 = -∞ → ¬ 𝐴 = +∞)
19 mnfltpnf 9949 . . . . . . 7 -∞ < +∞
20 breq1 4065 . . . . . . 7 (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞))
2119, 20mpbiri 168 . . . . . 6 (𝐴 = -∞ → 𝐴 < +∞)
2221necon3bi 2430 . . . . 5 𝐴 < +∞ → 𝐴 ≠ -∞)
2322necon2bi 2435 . . . 4 (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞)
2418, 232falsed 706 . . 3 (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
257, 14, 243jaoi 1318 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  w3o 982   = wceq 1375  wcel 2180   class class class wbr 4062  cr 7966  +∞cpnf 8146  -∞cmnf 8147  *cxr 8148   < clt 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-pre-ltirr 8079
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154
This theorem is referenced by:  npnflt  9979  xgepnf  9980  xrmaxiflemlub  11725
  Copyright terms: Public domain W3C validator