Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nltpnft | GIF version |
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 7946 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2357 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | ltpnf 9716 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | notnot 619 | . . . . 5 ⊢ (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞) |
7 | 3, 6 | 2falsed 692 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
8 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
9 | pnfxr 7951 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
10 | xrltnr 9715 | . . . . . 6 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ +∞ < +∞ |
12 | breq1 3985 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
13 | 11, 12 | mtbiri 665 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
14 | 8, 13 | 2thd 174 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
15 | mnfnepnf 7954 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
16 | 15 | neii 2338 | . . . . 5 ⊢ ¬ -∞ = +∞ |
17 | eqeq1 2172 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
18 | 16, 17 | mtbiri 665 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
19 | mnfltpnf 9721 | . . . . . . 7 ⊢ -∞ < +∞ | |
20 | breq1 3985 | . . . . . . 7 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
21 | 19, 20 | mpbiri 167 | . . . . . 6 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
22 | 21 | necon3bi 2386 | . . . . 5 ⊢ (¬ 𝐴 < +∞ → 𝐴 ≠ -∞) |
23 | 22 | necon2bi 2391 | . . . 4 ⊢ (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞) |
24 | 18, 23 | 2falsed 692 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
25 | 7, 14, 24 | 3jaoi 1293 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
26 | 1, 25 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 |
This theorem is referenced by: npnflt 9751 xgepnf 9752 xrmaxiflemlub 11189 |
Copyright terms: Public domain | W3C validator |