![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ngtmnft | GIF version |
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9449 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 7731 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2301 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | mnflt 9455 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
5 | notnot 601 | . . . . 5 ⊢ (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴) |
7 | 3, 6 | 2falsed 674 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
8 | pnfnemnf 7737 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
9 | neeq1 2293 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
10 | 8, 9 | mpbiri 167 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
11 | 10 | neneqd 2301 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
12 | mnfltpnf 9457 | . . . . . . 7 ⊢ -∞ < +∞ | |
13 | breq2 3897 | . . . . . . 7 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
14 | 12, 13 | mpbiri 167 | . . . . . 6 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
15 | 14 | necon3bi 2330 | . . . . 5 ⊢ (¬ -∞ < 𝐴 → 𝐴 ≠ +∞) |
16 | 15 | necon2bi 2335 | . . . 4 ⊢ (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴) |
17 | 11, 16 | 2falsed 674 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
18 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
19 | mnfxr 7739 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
20 | xrltnr 9452 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
21 | 19, 20 | ax-mp 7 | . . . . 5 ⊢ ¬ -∞ < -∞ |
22 | breq2 3897 | . . . . 5 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
23 | 21, 22 | mtbiri 647 | . . . 4 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
24 | 18, 23 | 2thd 174 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
25 | 7, 17, 24 | 3jaoi 1262 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
26 | 1, 25 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ w3o 942 = wceq 1312 ∈ wcel 1461 ≠ wne 2280 class class class wbr 3893 ℝcr 7539 +∞cpnf 7714 -∞cmnf 7715 ℝ*cxr 7716 < clt 7717 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7629 ax-resscn 7630 ax-pre-ltirr 7650 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-xp 4503 df-pnf 7719 df-mnf 7720 df-xr 7721 df-ltxr 7722 |
This theorem is referenced by: nmnfgt 9487 ge0nemnf 9493 xleaddadd 9556 |
Copyright terms: Public domain | W3C validator |