ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ngtmnft GIF version

Theorem ngtmnft 10001
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 elxr 9960 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renemnf 8183 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
32neneqd 2421 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
4 mnflt 9967 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
5 notnot 632 . . . . 5 (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴)
73, 62falsed 707 . . 3 (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
8 pnfnemnf 8189 . . . . . 6 +∞ ≠ -∞
9 neeq1 2413 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 168 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
1110neneqd 2421 . . . 4 (𝐴 = +∞ → ¬ 𝐴 = -∞)
12 mnfltpnf 9969 . . . . . . 7 -∞ < +∞
13 breq2 4086 . . . . . . 7 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
1412, 13mpbiri 168 . . . . . 6 (𝐴 = +∞ → -∞ < 𝐴)
1514necon3bi 2450 . . . . 5 (¬ -∞ < 𝐴𝐴 ≠ +∞)
1615necon2bi 2455 . . . 4 (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴)
1711, 162falsed 707 . . 3 (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
18 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
19 mnfxr 8191 . . . . . 6 -∞ ∈ ℝ*
20 xrltnr 9963 . . . . . 6 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2119, 20ax-mp 5 . . . . 5 ¬ -∞ < -∞
22 breq2 4086 . . . . 5 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2321, 22mtbiri 679 . . . 4 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2418, 232thd 175 . . 3 (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
257, 17, 243jaoi 1337 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  w3o 1001   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4082  cr 7986  +∞cpnf 8166  -∞cmnf 8167  *cxr 8168   < clt 8169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-pre-ltirr 8099
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174
This theorem is referenced by:  nmnfgt  10002  ge0nemnf  10008  xleaddadd  10071
  Copyright terms: Public domain W3C validator