![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ngtmnft | GIF version |
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9842 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 8068 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2385 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | mnflt 9849 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
5 | notnot 630 | . . . . 5 ⊢ (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴) |
7 | 3, 6 | 2falsed 703 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
8 | pnfnemnf 8074 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
9 | neeq1 2377 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
10 | 8, 9 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
11 | 10 | neneqd 2385 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
12 | mnfltpnf 9851 | . . . . . . 7 ⊢ -∞ < +∞ | |
13 | breq2 4033 | . . . . . . 7 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
14 | 12, 13 | mpbiri 168 | . . . . . 6 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
15 | 14 | necon3bi 2414 | . . . . 5 ⊢ (¬ -∞ < 𝐴 → 𝐴 ≠ +∞) |
16 | 15 | necon2bi 2419 | . . . 4 ⊢ (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴) |
17 | 11, 16 | 2falsed 703 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
18 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
19 | mnfxr 8076 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
20 | xrltnr 9845 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ ¬ -∞ < -∞ |
22 | breq2 4033 | . . . . 5 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
23 | 21, 22 | mtbiri 676 | . . . 4 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
24 | 18, 23 | 2thd 175 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
25 | 7, 17, 24 | 3jaoi 1314 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
26 | 1, 25 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4029 ℝcr 7871 +∞cpnf 8051 -∞cmnf 8052 ℝ*cxr 8053 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 |
This theorem is referenced by: nmnfgt 9884 ge0nemnf 9890 xleaddadd 9953 |
Copyright terms: Public domain | W3C validator |