ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ngtmnft GIF version

Theorem ngtmnft 9952
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 elxr 9911 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renemnf 8134 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
32neneqd 2398 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
4 mnflt 9918 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
5 notnot 630 . . . . 5 (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴)
73, 62falsed 704 . . 3 (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
8 pnfnemnf 8140 . . . . . 6 +∞ ≠ -∞
9 neeq1 2390 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 168 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
1110neneqd 2398 . . . 4 (𝐴 = +∞ → ¬ 𝐴 = -∞)
12 mnfltpnf 9920 . . . . . . 7 -∞ < +∞
13 breq2 4052 . . . . . . 7 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
1412, 13mpbiri 168 . . . . . 6 (𝐴 = +∞ → -∞ < 𝐴)
1514necon3bi 2427 . . . . 5 (¬ -∞ < 𝐴𝐴 ≠ +∞)
1615necon2bi 2432 . . . 4 (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴)
1711, 162falsed 704 . . 3 (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
18 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
19 mnfxr 8142 . . . . . 6 -∞ ∈ ℝ*
20 xrltnr 9914 . . . . . 6 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2119, 20ax-mp 5 . . . . 5 ¬ -∞ < -∞
22 breq2 4052 . . . . 5 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2321, 22mtbiri 677 . . . 4 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2418, 232thd 175 . . 3 (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
257, 17, 243jaoi 1316 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
261, 25sylbi 121 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  w3o 980   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4048  cr 7937  +∞cpnf 8117  -∞cmnf 8118  *cxr 8119   < clt 8120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125
This theorem is referenced by:  nmnfgt  9953  ge0nemnf  9959  xleaddadd  10022
  Copyright terms: Public domain W3C validator