ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ngtmnft GIF version

Theorem ngtmnft 9753
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 elxr 9712 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 renemnf 7947 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
32neneqd 2357 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
4 mnflt 9719 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
5 notnot 619 . . . . 5 (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴)
64, 5syl 14 . . . 4 (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴)
73, 62falsed 692 . . 3 (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
8 pnfnemnf 7953 . . . . . 6 +∞ ≠ -∞
9 neeq1 2349 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 167 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
1110neneqd 2357 . . . 4 (𝐴 = +∞ → ¬ 𝐴 = -∞)
12 mnfltpnf 9721 . . . . . . 7 -∞ < +∞
13 breq2 3986 . . . . . . 7 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
1412, 13mpbiri 167 . . . . . 6 (𝐴 = +∞ → -∞ < 𝐴)
1514necon3bi 2386 . . . . 5 (¬ -∞ < 𝐴𝐴 ≠ +∞)
1615necon2bi 2391 . . . 4 (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴)
1711, 162falsed 692 . . 3 (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
18 id 19 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
19 mnfxr 7955 . . . . . 6 -∞ ∈ ℝ*
20 xrltnr 9715 . . . . . 6 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
2119, 20ax-mp 5 . . . . 5 ¬ -∞ < -∞
22 breq2 3986 . . . . 5 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
2321, 22mtbiri 665 . . . 4 (𝐴 = -∞ → ¬ -∞ < 𝐴)
2418, 232thd 174 . . 3 (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
257, 17, 243jaoi 1293 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
261, 25sylbi 120 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3o 967   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cr 7752  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  nmnfgt  9754  ge0nemnf  9760  xleaddadd  9823
  Copyright terms: Public domain W3C validator