Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsprme0 | GIF version |
Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgsprme0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 12039 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | lgscl 13515 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ) | |
3 | 1, 2 | sylan2 284 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) ∈ ℤ) |
4 | 0z 9198 | . . 3 ⊢ 0 ∈ ℤ | |
5 | zdceq 9262 | . . 3 ⊢ (((𝐴 /L 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 /L 𝑃) = 0) | |
6 | 3, 4, 5 | sylancl 410 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 /L 𝑃) = 0) |
7 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝐴 ∈ ℤ) | |
8 | prmnn 12038 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | 8 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
10 | 7, 9 | zmodcld 10276 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℕ0) |
11 | 10 | nn0zd 9307 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℤ) |
12 | zdceq 9262 | . . 3 ⊢ (((𝐴 mod 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 mod 𝑃) = 0) | |
13 | 11, 4, 12 | sylancl 410 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 mod 𝑃) = 0) |
14 | lgsne0 13539 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) | |
15 | 1, 14 | sylan2 284 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
16 | coprm 12072 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
17 | 16 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
18 | 1 | anim1i 338 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
19 | 18 | ancoms 266 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
20 | gcdcom 11902 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) | |
21 | 19, 20 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
22 | 21 | eqeq1d 2174 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
23 | 17, 22 | bitr2d 188 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ 𝐴)) |
24 | dvdsval3 11727 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) | |
25 | 8, 24 | sylan 281 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
26 | 25 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
27 | 26 | notbid 657 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
28 | 15, 23, 27 | 3bitrd 213 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
29 | 28 | 2a1d 23 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)))) |
30 | 29 | necon4abiddc 2408 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)))) |
31 | 6, 13, 30 | mp2d 47 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2335 class class class wbr 3981 (class class class)co 5841 0cc0 7749 1c1 7750 ℕcn 8853 ℤcz 9187 mod cmo 10253 ∥ cdvds 11723 gcd cgcd 11871 ℙcprime 12035 /L clgs 13498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-irdg 6334 df-frec 6355 df-1o 6380 df-2o 6381 df-oadd 6384 df-er 6497 df-en 6703 df-dom 6704 df-fin 6705 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-ihash 10685 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-clim 11216 df-proddc 11488 df-dvds 11724 df-gcd 11872 df-prm 12036 df-phi 12139 df-pc 12213 df-lgs 13499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |