![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgsprme0 | GIF version |
Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgsprme0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 12111 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | lgscl 14418 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ) | |
3 | 1, 2 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) ∈ ℤ) |
4 | 0z 9264 | . . 3 ⊢ 0 ∈ ℤ | |
5 | zdceq 9328 | . . 3 ⊢ (((𝐴 /L 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 /L 𝑃) = 0) | |
6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 /L 𝑃) = 0) |
7 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝐴 ∈ ℤ) | |
8 | prmnn 12110 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | 8 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
10 | 7, 9 | zmodcld 10345 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℕ0) |
11 | 10 | nn0zd 9373 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℤ) |
12 | zdceq 9328 | . . 3 ⊢ (((𝐴 mod 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 mod 𝑃) = 0) | |
13 | 11, 4, 12 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 mod 𝑃) = 0) |
14 | lgsne0 14442 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) | |
15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
16 | coprm 12144 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
17 | 16 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
18 | 1 | anim1i 340 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
19 | 18 | ancoms 268 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
20 | gcdcom 11974 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) | |
21 | 19, 20 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
22 | 21 | eqeq1d 2186 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
23 | 17, 22 | bitr2d 189 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ 𝐴)) |
24 | dvdsval3 11798 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) | |
25 | 8, 24 | sylan 283 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
26 | 25 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
27 | 26 | notbid 667 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
28 | 15, 23, 27 | 3bitrd 214 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
29 | 28 | 2a1d 23 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)))) |
30 | 29 | necon4abiddc 2420 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)))) |
31 | 6, 13, 30 | mp2d 47 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 class class class wbr 4004 (class class class)co 5875 0cc0 7811 1c1 7812 ℕcn 8919 ℤcz 9253 mod cmo 10322 ∥ cdvds 11794 gcd cgcd 11943 ℙcprime 12107 /L clgs 14401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-xor 1376 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-frec 6392 df-1o 6417 df-2o 6418 df-oadd 6421 df-er 6535 df-en 6741 df-dom 6742 df-fin 6743 df-sup 6983 df-inf 6984 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-n0 9177 df-z 9254 df-uz 9529 df-q 9620 df-rp 9654 df-fz 10009 df-fzo 10143 df-fl 10270 df-mod 10323 df-seqfrec 10446 df-exp 10520 df-ihash 10756 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-clim 11287 df-proddc 11559 df-dvds 11795 df-gcd 11944 df-prm 12108 df-phi 12211 df-pc 12285 df-lgs 14402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |