| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsprme0 | GIF version | ||
| Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| lgsprme0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz 12508 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 2 | lgscl 15566 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ) | |
| 3 | 1, 2 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) ∈ ℤ) |
| 4 | 0z 9403 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | zdceq 9468 | . . 3 ⊢ (((𝐴 /L 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 /L 𝑃) = 0) | |
| 6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 /L 𝑃) = 0) |
| 7 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝐴 ∈ ℤ) | |
| 8 | prmnn 12507 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | 8 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 10 | 7, 9 | zmodcld 10512 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℕ0) |
| 11 | 10 | nn0zd 9513 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 mod 𝑃) ∈ ℤ) |
| 12 | zdceq 9468 | . . 3 ⊢ (((𝐴 mod 𝑃) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐴 mod 𝑃) = 0) | |
| 13 | 11, 4, 12 | sylancl 413 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID (𝐴 mod 𝑃) = 0) |
| 14 | lgsne0 15590 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) | |
| 15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
| 16 | coprm 12541 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
| 17 | 16 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
| 18 | 1 | anim1i 340 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
| 19 | 18 | ancoms 268 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
| 20 | gcdcom 12369 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) | |
| 21 | 19, 20 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
| 22 | 21 | eqeq1d 2215 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
| 23 | 17, 22 | bitr2d 189 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ 𝐴)) |
| 24 | dvdsval3 12177 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) | |
| 25 | 8, 24 | sylan 283 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
| 26 | 25 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
| 27 | 26 | notbid 669 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
| 28 | 15, 23, 27 | 3bitrd 214 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
| 29 | 28 | 2a1d 23 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)))) |
| 30 | 29 | necon4abiddc 2450 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (DECID (𝐴 /L 𝑃) = 0 → (DECID (𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)))) |
| 31 | 6, 13, 30 | mp2d 47 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4051 (class class class)co 5957 0cc0 7945 1c1 7946 ℕcn 9056 ℤcz 9392 mod cmo 10489 ∥ cdvds 12173 gcd cgcd 12349 ℙcprime 12504 /L clgs 15549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-2o 6516 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-proddc 11937 df-dvds 12174 df-gcd 12350 df-prm 12505 df-phi 12608 df-pc 12683 df-lgs 15550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |