ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq12d GIF version

Theorem neleq12d 2428
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.)
Hypotheses
Ref Expression
neleq12d.1 (𝜑𝐴 = 𝐵)
neleq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
neleq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem neleq12d
StepHypRef Expression
1 neleq12d.1 . . 3 (𝜑𝐴 = 𝐵)
2 neleq1 2426 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2syl 14 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
4 neleq12d.2 . . 3 (𝜑𝐶 = 𝐷)
5 neleq2 2427 . . 3 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
64, 5syl 14 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
73, 6bitrd 187 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wnel 2422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-clel 2153  df-nel 2423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator