| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neleq12d | GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) |
| Ref | Expression |
|---|---|
| neleq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| neleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| neleq12d | ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neleq1 2466 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| 4 | neleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | neleq2 2467 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐵 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐵 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| 7 | 3, 6 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∉ wnel 2462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-nel 2463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |