ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq12d Unicode version

Theorem neleq12d 2476
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.)
Hypotheses
Ref Expression
neleq12d.1  |-  ( ph  ->  A  =  B )
neleq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
neleq12d  |-  ( ph  ->  ( A  e/  C  <->  B  e/  D ) )

Proof of Theorem neleq12d
StepHypRef Expression
1 neleq12d.1 . . 3  |-  ( ph  ->  A  =  B )
2 neleq1 2474 . . 3  |-  ( A  =  B  ->  ( A  e/  C  <->  B  e/  C ) )
31, 2syl 14 . 2  |-  ( ph  ->  ( A  e/  C  <->  B  e/  C ) )
4 neleq12d.2 . . 3  |-  ( ph  ->  C  =  D )
5 neleq2 2475 . . 3  |-  ( C  =  D  ->  ( B  e/  C  <->  B  e/  D ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( B  e/  C  <->  B  e/  D ) )
73, 6bitrd 188 1  |-  ( ph  ->  ( A  e/  C  <->  B  e/  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e/ wnel 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200  df-nel 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator