ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq1 GIF version

Theorem neleq1 2426
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 eleq1 2220 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21notbid 657 . 2 (𝐴 = 𝐵 → (¬ 𝐴𝐶 ↔ ¬ 𝐵𝐶))
3 df-nel 2423 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
4 df-nel 2423 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
52, 3, 43bitr4g 222 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1335  wcel 2128  wnel 2422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-clel 2153  df-nel 2423
This theorem is referenced by:  neleq12d  2428  ruALT  4510
  Copyright terms: Public domain W3C validator