ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq1 GIF version

Theorem neleq1 2499
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 eleq1 2292 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21notbid 671 . 2 (𝐴 = 𝐵 → (¬ 𝐴𝐶 ↔ ¬ 𝐵𝐶))
3 df-nel 2496 . 2 (𝐴𝐶 ↔ ¬ 𝐴𝐶)
4 df-nel 2496 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1395  wcel 2200  wnel 2495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-nel 2496
This theorem is referenced by:  neleq12d  2501  ruALT  4642
  Copyright terms: Public domain W3C validator