Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neleq1 | GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2220 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | notbid 657 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶)) |
3 | df-nel 2423 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
4 | df-nel 2423 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∉ wnel 2422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 df-nel 2423 |
This theorem is referenced by: neleq12d 2428 ruALT 4510 |
Copyright terms: Public domain | W3C validator |