| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neleq1 | GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | notbid 669 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶)) |
| 3 | df-nel 2473 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
| 4 | df-nel 2473 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∉ wnel 2472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 df-nel 2473 |
| This theorem is referenced by: neleq12d 2478 ruALT 4603 |
| Copyright terms: Public domain | W3C validator |