ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnel GIF version

Theorem nfnel 2385
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1 𝑥𝐴
nfnel.2 𝑥𝐵
Assertion
Ref Expression
nfnel 𝑥 𝐴𝐵

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2379 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 nfnel.1 . . . 4 𝑥𝐴
3 nfnel.2 . . . 4 𝑥𝐵
42, 3nfel 2265 . . 3 𝑥 𝐴𝐵
54nfn 1619 . 2 𝑥 ¬ 𝐴𝐵
61, 5nfxfr 1433 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1419  wcel 1463  wnfc 2243  wnel 2378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-cleq 2108  df-clel 2111  df-nfc 2245  df-nel 2379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator