ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnel GIF version

Theorem nfnel 2462
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1 𝑥𝐴
nfnel.2 𝑥𝐵
Assertion
Ref Expression
nfnel 𝑥 𝐴𝐵

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2456 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 nfnel.1 . . . 4 𝑥𝐴
3 nfnel.2 . . . 4 𝑥𝐵
42, 3nfel 2341 . . 3 𝑥 𝐴𝐵
54nfn 1669 . 2 𝑥 ¬ 𝐴𝐵
61, 5nfxfr 1485 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1471  wcel 2160  wnfc 2319  wnel 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-cleq 2182  df-clel 2185  df-nfc 2321  df-nel 2456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator