ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelneq GIF version

Theorem nelneq 2267
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2229 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 158 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32con3dimp 625 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator