| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1481 ax16 1859 ax16i 1904 nelneq 2330 nelneq2 2331 nelne1 2490 nelne2 2491 spc2gv 2894 spc3gv 2896 nssne1 3282 nssne2 3283 ifbothdc 3637 difsn 3804 iununir 4048 nbrne1 4101 nbrne2 4102 ss1o0el1 4280 mosubopt 4783 issref 5110 ssimaex 5694 chfnrn 5745 ffnfv 5792 f1elima 5896 dftpos4 6407 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 snon0 7098 en2prde 7362 exmidonfinlem 7367 enq0sym 7615 prop 7658 prubl 7669 negf1o 8524 0fz1 10237 elfzmlbp 10324 swrdnd 11186 maxleast 11719 negfi 11734 isprm2 12634 nprmdvds1 12657 oddprmdvds 12872 ushgredgedg 16018 ushgredgedgloop 16020 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |