ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpcd GIF version

Theorem biimpcd 159
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.)
Hypothesis
Ref Expression
biimpcd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
biimpcd (𝜓 → (𝜑𝜒))

Proof of Theorem biimpcd
StepHypRef Expression
1 id 19 . 2 (𝜓𝜓)
2 biimpcd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5ibcom 155 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biimpac  298  3impexpbicom  1457  ax16  1835  ax16i  1880  nelneq  2305  nelneq2  2306  nelne1  2465  nelne2  2466  spc2gv  2863  spc3gv  2865  nssne1  3250  nssne2  3251  ifbothdc  3604  difsn  3769  iununir  4010  nbrne1  4062  nbrne2  4063  ss1o0el1  4240  mosubopt  4739  issref  5064  ssimaex  5639  chfnrn  5690  ffnfv  5737  f1elima  5841  dftpos4  6348  tfr1onlemsucaccv  6426  tfrcllemsucaccv  6439  snon0  7036  exmidonfinlem  7300  enq0sym  7544  prop  7587  prubl  7598  negf1o  8453  0fz1  10166  elfzmlbp  10253  maxleast  11495  negfi  11510  isprm2  12410  nprmdvds1  12433  oddprmdvds  12648  exmidsbthrlem  15923
  Copyright terms: Public domain W3C validator