![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1438 ax16 1813 ax16i 1858 nelneq 2278 nelneq2 2279 nelne1 2437 nelne2 2438 spc2gv 2830 spc3gv 2832 nssne1 3215 nssne2 3216 ifbothdc 3569 difsn 3731 iununir 3972 nbrne1 4024 nbrne2 4025 ss1o0el1 4199 mosubopt 4693 issref 5013 ssimaex 5579 chfnrn 5629 ffnfv 5676 f1elima 5776 dftpos4 6266 tfr1onlemsucaccv 6344 tfrcllemsucaccv 6357 snon0 6937 exmidonfinlem 7194 enq0sym 7433 prop 7476 prubl 7487 negf1o 8341 0fz1 10047 elfzmlbp 10134 maxleast 11224 negfi 11238 isprm2 12119 nprmdvds1 12142 oddprmdvds 12354 exmidsbthrlem 14855 |
Copyright terms: Public domain | W3C validator |