| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1458 ax16 1836 ax16i 1881 nelneq 2306 nelneq2 2307 nelne1 2466 nelne2 2467 spc2gv 2864 spc3gv 2866 nssne1 3251 nssne2 3252 ifbothdc 3605 difsn 3770 iununir 4011 nbrne1 4063 nbrne2 4064 ss1o0el1 4241 mosubopt 4740 issref 5065 ssimaex 5640 chfnrn 5691 ffnfv 5738 f1elima 5842 dftpos4 6349 tfr1onlemsucaccv 6427 tfrcllemsucaccv 6440 snon0 7037 exmidonfinlem 7301 enq0sym 7545 prop 7588 prubl 7599 negf1o 8454 0fz1 10167 elfzmlbp 10254 swrdnd 11112 maxleast 11524 negfi 11539 isprm2 12439 nprmdvds1 12462 oddprmdvds 12677 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |