| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1449 ax16 1827 ax16i 1872 nelneq 2297 nelneq2 2298 nelne1 2457 nelne2 2458 spc2gv 2855 spc3gv 2857 nssne1 3242 nssne2 3243 ifbothdc 3595 difsn 3760 iununir 4001 nbrne1 4053 nbrne2 4054 ss1o0el1 4231 mosubopt 4729 issref 5053 ssimaex 5625 chfnrn 5676 ffnfv 5723 f1elima 5823 dftpos4 6330 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 snon0 7010 exmidonfinlem 7274 enq0sym 7518 prop 7561 prubl 7572 negf1o 8427 0fz1 10139 elfzmlbp 10226 maxleast 11397 negfi 11412 isprm2 12312 nprmdvds1 12335 oddprmdvds 12550 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |