![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 153 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biimpac 292 3impexpbicom 1372 ax16 1741 ax16i 1786 nelneq 2188 nelneq2 2189 nelne1 2345 nelne2 2346 spc2gv 2709 spc3gv 2711 nssne1 3082 nssne2 3083 ifbothdc 3423 difsn 3574 iununir 3812 nbrne1 3862 nbrne2 3863 exmid01 4032 mosubopt 4503 issref 4814 ssimaex 5365 chfnrn 5410 ffnfv 5456 f1elima 5552 dftpos4 6028 tfr1onlemsucaccv 6106 tfrcllemsucaccv 6119 snon0 6643 enq0sym 6989 prop 7032 prubl 7043 negf1o 7858 0fz1 9457 elfzmlbp 9539 maxleast 10642 negfi 10655 isprm2 11373 nprmdvds1 11395 exmidsbthrlem 11867 |
Copyright terms: Public domain | W3C validator |