| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1449 ax16 1827 ax16i 1872 nelneq 2297 nelneq2 2298 nelne1 2457 nelne2 2458 spc2gv 2855 spc3gv 2857 nssne1 3241 nssne2 3242 ifbothdc 3594 difsn 3759 iununir 4000 nbrne1 4052 nbrne2 4053 ss1o0el1 4230 mosubopt 4728 issref 5052 ssimaex 5622 chfnrn 5673 ffnfv 5720 f1elima 5820 dftpos4 6321 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 snon0 7001 exmidonfinlem 7260 enq0sym 7499 prop 7542 prubl 7553 negf1o 8408 0fz1 10120 elfzmlbp 10207 maxleast 11378 negfi 11393 isprm2 12285 nprmdvds1 12308 oddprmdvds 12523 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |