Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 154 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpac 296 3impexpbicom 1426 ax16 1801 ax16i 1846 nelneq 2267 nelneq2 2268 nelne1 2426 nelne2 2427 spc2gv 2817 spc3gv 2819 nssne1 3200 nssne2 3201 ifbothdc 3552 difsn 3710 iununir 3949 nbrne1 4001 nbrne2 4002 ss1o0el1 4176 mosubopt 4669 issref 4986 ssimaex 5547 chfnrn 5596 ffnfv 5643 f1elima 5741 dftpos4 6231 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 snon0 6901 exmidonfinlem 7149 enq0sym 7373 prop 7416 prubl 7427 negf1o 8280 0fz1 9980 elfzmlbp 10067 maxleast 11155 negfi 11169 isprm2 12049 nprmdvds1 12072 oddprmdvds 12284 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |