| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1459 ax16 1837 ax16i 1882 nelneq 2308 nelneq2 2309 nelne1 2468 nelne2 2469 spc2gv 2871 spc3gv 2873 nssne1 3259 nssne2 3260 ifbothdc 3614 difsn 3781 iununir 4025 nbrne1 4078 nbrne2 4079 ss1o0el1 4257 mosubopt 4758 issref 5084 ssimaex 5663 chfnrn 5714 ffnfv 5761 f1elima 5865 dftpos4 6372 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 snon0 7063 en2prde 7327 exmidonfinlem 7332 enq0sym 7580 prop 7623 prubl 7634 negf1o 8489 0fz1 10202 elfzmlbp 10289 swrdnd 11150 maxleast 11639 negfi 11654 isprm2 12554 nprmdvds1 12577 oddprmdvds 12792 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |