![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1438 ax16 1813 ax16i 1858 nelneq 2278 nelneq2 2279 nelne1 2437 nelne2 2438 spc2gv 2829 spc3gv 2831 nssne1 3214 nssne2 3215 ifbothdc 3568 difsn 3730 iununir 3971 nbrne1 4023 nbrne2 4024 ss1o0el1 4198 mosubopt 4692 issref 5012 ssimaex 5578 chfnrn 5628 ffnfv 5675 f1elima 5774 dftpos4 6264 tfr1onlemsucaccv 6342 tfrcllemsucaccv 6355 snon0 6935 exmidonfinlem 7192 enq0sym 7431 prop 7474 prubl 7485 negf1o 8339 0fz1 10045 elfzmlbp 10132 maxleast 11222 negfi 11236 isprm2 12117 nprmdvds1 12140 oddprmdvds 12352 exmidsbthrlem 14773 |
Copyright terms: Public domain | W3C validator |