| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1457 ax16 1835 ax16i 1880 nelneq 2305 nelneq2 2306 nelne1 2465 nelne2 2466 spc2gv 2863 spc3gv 2865 nssne1 3250 nssne2 3251 ifbothdc 3604 difsn 3769 iununir 4010 nbrne1 4062 nbrne2 4063 ss1o0el1 4240 mosubopt 4739 issref 5064 ssimaex 5639 chfnrn 5690 ffnfv 5737 f1elima 5841 dftpos4 6348 tfr1onlemsucaccv 6426 tfrcllemsucaccv 6439 snon0 7036 exmidonfinlem 7300 enq0sym 7544 prop 7587 prubl 7598 negf1o 8453 0fz1 10166 elfzmlbp 10253 maxleast 11495 negfi 11510 isprm2 12410 nprmdvds1 12433 oddprmdvds 12648 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |