![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 155 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1438 ax16 1813 ax16i 1858 nelneq 2278 nelneq2 2279 nelne1 2437 nelne2 2438 spc2gv 2828 spc3gv 2830 nssne1 3213 nssne2 3214 ifbothdc 3567 difsn 3729 iununir 3970 nbrne1 4022 nbrne2 4023 ss1o0el1 4197 mosubopt 4691 issref 5011 ssimaex 5577 chfnrn 5627 ffnfv 5674 f1elima 5773 dftpos4 6263 tfr1onlemsucaccv 6341 tfrcllemsucaccv 6354 snon0 6934 exmidonfinlem 7191 enq0sym 7430 prop 7473 prubl 7484 negf1o 8338 0fz1 10044 elfzmlbp 10131 maxleast 11221 negfi 11235 isprm2 12116 nprmdvds1 12139 oddprmdvds 12351 exmidsbthrlem 14740 |
Copyright terms: Public domain | W3C validator |