Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpcd | GIF version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibcom 154 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpac 296 3impexpbicom 1431 ax16 1806 ax16i 1851 nelneq 2271 nelneq2 2272 nelne1 2430 nelne2 2431 spc2gv 2821 spc3gv 2823 nssne1 3205 nssne2 3206 ifbothdc 3558 difsn 3717 iununir 3956 nbrne1 4008 nbrne2 4009 ss1o0el1 4183 mosubopt 4676 issref 4993 ssimaex 5557 chfnrn 5607 ffnfv 5654 f1elima 5752 dftpos4 6242 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 snon0 6913 exmidonfinlem 7170 enq0sym 7394 prop 7437 prubl 7448 negf1o 8301 0fz1 10001 elfzmlbp 10088 maxleast 11177 negfi 11191 isprm2 12071 nprmdvds1 12094 oddprmdvds 12306 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |