Proof of Theorem cleqh
Step | Hyp | Ref
| Expression |
1 | | dfcleq 2164 |
. 2
⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
2 | | ax-17 1519 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | | dfbi2 386 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
4 | | cleqh.1 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
5 | | cleqh.2 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
6 | 4, 5 | hbim 1538 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑥(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) |
7 | 5, 4 | hbim 1538 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴) → ∀𝑥(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) |
8 | 6, 7 | hban 1540 |
. . . . 5
⊢ (((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) → ∀𝑥((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
9 | 3, 8 | hbxfrbi 1465 |
. . . 4
⊢ ((𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) → ∀𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
10 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
11 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
12 | 10, 11 | bibi12d 234 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
13 | 12 | biimpd 143 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
14 | 2, 9, 13 | cbv3h 1736 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
15 | 12 | equcoms 1701 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
16 | 15 | biimprd 157 |
. . . 4
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
17 | 9, 2, 16 | cbv3h 1736 |
. . 3
⊢
(∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 14, 17 | impbii 125 |
. 2
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
19 | 1, 18 | bitr4i 186 |
1
⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |