Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1 | GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2180 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | anbi1d 462 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | exbidv 1818 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | df-clel 2166 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
5 | df-clel 2166 | . 2 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
Copyright terms: Public domain | W3C validator |