Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximd | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
eximd.1 | ⊢ Ⅎ𝑥𝜑 |
eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1512 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | eximdh 1604 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: 19.41 1679 mo2icl 2909 ssrexf 3209 copsexg 4229 ssopab2 4260 eunex 4545 spc2ed 6212 |
Copyright terms: Public domain | W3C validator |