ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbidh GIF version

Theorem exbidh 1602
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
exbidh.1 (𝜑 → ∀𝑥𝜑)
exbidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbidh (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbidh
StepHypRef Expression
1 exbidh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 exbidh.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1457 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 exbi 1592 . 2 (∀𝑥(𝜓𝜒) → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
53, 4syl 14 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exbid  1604  drex2  1720  drex1  1786  exbidv  1813  mobidh  2048
  Copyright terms: Public domain W3C validator