| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exbidh | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| exbidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| exbidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| exbidh | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exbidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | exbidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) | 
| 4 | exbi 1618 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: exbid 1630 drex2 1746 drex1 1812 exbidv 1839 mobidh 2079 | 
| Copyright terms: Public domain | W3C validator |