ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbidh GIF version

Theorem exbidh 1625
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
exbidh.1 (𝜑 → ∀𝑥𝜑)
exbidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbidh (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbidh
StepHypRef Expression
1 exbidh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 exbidh.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1480 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 exbi 1615 . 2 (∀𝑥(𝜓𝜒) → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
53, 4syl 14 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exbid  1627  drex2  1743  drex1  1809  exbidv  1836  mobidh  2076
  Copyright terms: Public domain W3C validator