![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nexdv | GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | nexd 1613 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: pw1nct 14791 |
Copyright terms: Public domain | W3C validator |