Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > chvarv | GIF version |
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
chv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
chv.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
chvarv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spv 1837 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | chv.2 | . 2 ⊢ 𝜑 | |
4 | 2, 3 | mpg 1428 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-nf 1438 |
This theorem is referenced by: axext3 2137 axsep2 4079 tz6.12f 5490 ltordlem 8336 bdsep2 13399 strcoll2 13496 |
Copyright terms: Public domain | W3C validator |