![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > chvarv | GIF version |
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
chv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
chv.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
chvarv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spv 1860 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | chv.2 | . 2 ⊢ 𝜑 | |
4 | 2, 3 | mpg 1451 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: axext3 2160 axsep2 4123 tz6.12f 5545 ltordlem 8439 bdsep2 14641 strcoll2 14738 |
Copyright terms: Public domain | W3C validator |