Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1nct GIF version

Theorem pw1nct 14408
Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
Assertion
Ref Expression
pw1nct (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
Distinct variable groups:   𝑓,𝑚,𝑛,𝑝,𝑟   𝑓,𝑞,𝑚,𝑟

Proof of Theorem pw1nct
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . . . . . . 8 𝑚 𝑟 ⊆ (𝒫 1o × ω)
2 nfv 1528 . . . . . . . . 9 𝑚𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛
3 nfre1 2520 . . . . . . . . 9 𝑚𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚
42, 3nfim 1572 . . . . . . . 8 𝑚(∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)
51, 4nfim 1572 . . . . . . 7 𝑚(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚))
65nfal 1576 . . . . . 6 𝑚𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚))
7 nfv 1528 . . . . . 6 𝑚 𝑓:ω–onto→𝒫 1o
86, 7nfan 1565 . . . . 5 𝑚(∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o)
9 breq1 4003 . . . . . . . . 9 (𝑞 = ∅ → (𝑞𝑓𝑚 ↔ ∅𝑓𝑚))
10 simpr 110 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)
11 0elpw 4161 . . . . . . . . . 10 ∅ ∈ 𝒫 1o
1211a1i 9 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∅ ∈ 𝒫 1o)
139, 10, 12rspcdva 2846 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∅𝑓𝑚)
14 0ex 4127 . . . . . . . . 9 ∅ ∈ V
15 vex 2740 . . . . . . . . 9 𝑚 ∈ V
1614, 15brcnv 4806 . . . . . . . 8 (∅𝑓𝑚𝑚𝑓∅)
1713, 16sylib 122 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚𝑓∅)
18 fofn 5436 . . . . . . . . 9 (𝑓:ω–onto→𝒫 1o𝑓 Fn ω)
1918ad3antlr 493 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑓 Fn ω)
20 simplr 528 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚 ∈ ω)
21 fnbrfvb 5552 . . . . . . . 8 ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓𝑚) = ∅ ↔ 𝑚𝑓∅))
2219, 20, 21syl2anc 411 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ((𝑓𝑚) = ∅ ↔ 𝑚𝑓∅))
2317, 22mpbird 167 . . . . . 6 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → (𝑓𝑚) = ∅)
24 breq1 4003 . . . . . . . . . 10 (𝑞 = 1o → (𝑞𝑓𝑚 ↔ 1o𝑓𝑚))
25 1oex 6419 . . . . . . . . . . . 12 1o ∈ V
2625pwid 3589 . . . . . . . . . . 11 1o ∈ 𝒫 1o
2726a1i 9 . . . . . . . . . 10 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 1o ∈ 𝒫 1o)
2824, 10, 27rspcdva 2846 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 1o𝑓𝑚)
2925, 15brcnv 4806 . . . . . . . . 9 (1o𝑓𝑚𝑚𝑓1o)
3028, 29sylib 122 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚𝑓1o)
31 fnbrfvb 5552 . . . . . . . . 9 ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓𝑚) = 1o𝑚𝑓1o))
3219, 20, 31syl2anc 411 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ((𝑓𝑚) = 1o𝑚𝑓1o))
3330, 32mpbird 167 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → (𝑓𝑚) = 1o)
34 1n0 6427 . . . . . . . 8 1o ≠ ∅
3534neii 2349 . . . . . . 7 ¬ 1o = ∅
36 eqeq1 2184 . . . . . . . . 9 ((𝑓𝑚) = 1o → ((𝑓𝑚) = ∅ ↔ 1o = ∅))
3736biimpd 144 . . . . . . . 8 ((𝑓𝑚) = 1o → ((𝑓𝑚) = ∅ → 1o = ∅))
3837con3dimp 635 . . . . . . 7 (((𝑓𝑚) = 1o ∧ ¬ 1o = ∅) → ¬ (𝑓𝑚) = ∅)
3933, 35, 38sylancl 413 . . . . . 6 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ¬ (𝑓𝑚) = ∅)
4023, 39pm2.21fal 1373 . . . . 5 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ⊥)
41 fof 5434 . . . . . . . 8 (𝑓:ω–onto→𝒫 1o𝑓:ω⟶𝒫 1o)
42 fssxp 5379 . . . . . . . . . 10 (𝑓:ω⟶𝒫 1o𝑓 ⊆ (ω × 𝒫 1o))
43 cnvss 4796 . . . . . . . . . 10 (𝑓 ⊆ (ω × 𝒫 1o) → 𝑓(ω × 𝒫 1o))
4442, 43syl 14 . . . . . . . . 9 (𝑓:ω⟶𝒫 1o𝑓(ω × 𝒫 1o))
45 cnvxp 5043 . . . . . . . . 9 (ω × 𝒫 1o) = (𝒫 1o × ω)
4644, 45sseqtrdi 3203 . . . . . . . 8 (𝑓:ω⟶𝒫 1o𝑓 ⊆ (𝒫 1o × ω))
4741, 46syl 14 . . . . . . 7 (𝑓:ω–onto→𝒫 1o𝑓 ⊆ (𝒫 1o × ω))
4847adantl 277 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → 𝑓 ⊆ (𝒫 1o × ω))
49 foelrn 5748 . . . . . . . . 9 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → ∃𝑛 ∈ ω 𝑝 = (𝑓𝑛))
5018ad2antrr 488 . . . . . . . . . . 11 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → 𝑓 Fn ω)
51 simpr 110 . . . . . . . . . . 11 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
52 eqcom 2179 . . . . . . . . . . . 12 ((𝑓𝑛) = 𝑝𝑝 = (𝑓𝑛))
53 fnbrfvb 5552 . . . . . . . . . . . . 13 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓𝑛) = 𝑝𝑛𝑓𝑝))
54 brcnvg 4804 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ 𝑛 ∈ V) → (𝑝𝑓𝑛𝑛𝑓𝑝))
5554elvd 2742 . . . . . . . . . . . . . 14 (𝑝 ∈ V → (𝑝𝑓𝑛𝑛𝑓𝑝))
5655elv 2741 . . . . . . . . . . . . 13 (𝑝𝑓𝑛𝑛𝑓𝑝)
5753, 56bitr4di 198 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓𝑛) = 𝑝𝑝𝑓𝑛))
5852, 57bitr3id 194 . . . . . . . . . . 11 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → (𝑝 = (𝑓𝑛) ↔ 𝑝𝑓𝑛))
5950, 51, 58syl2anc 411 . . . . . . . . . 10 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → (𝑝 = (𝑓𝑛) ↔ 𝑝𝑓𝑛))
6059rexbidva 2474 . . . . . . . . 9 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → (∃𝑛 ∈ ω 𝑝 = (𝑓𝑛) ↔ ∃𝑛 ∈ ω 𝑝𝑓𝑛))
6149, 60mpbid 147 . . . . . . . 8 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → ∃𝑛 ∈ ω 𝑝𝑓𝑛)
6261ralrimiva 2550 . . . . . . 7 (𝑓:ω–onto→𝒫 1o → ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛)
6362adantl 277 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛)
64 cnvexg 5162 . . . . . . . 8 (𝑓 ∈ V → 𝑓 ∈ V)
6564elv 2741 . . . . . . 7 𝑓 ∈ V
66 simpl 109 . . . . . . 7 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)))
67 sseq1 3178 . . . . . . . . 9 (𝑟 = 𝑓 → (𝑟 ⊆ (𝒫 1o × ω) ↔ 𝑓 ⊆ (𝒫 1o × ω)))
68 breq 4002 . . . . . . . . . . . 12 (𝑟 = 𝑓 → (𝑝𝑟𝑛𝑝𝑓𝑛))
6968rexbidv 2478 . . . . . . . . . . 11 (𝑟 = 𝑓 → (∃𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∃𝑛 ∈ ω 𝑝𝑓𝑛))
7069ralbidv 2477 . . . . . . . . . 10 (𝑟 = 𝑓 → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛))
71 breq 4002 . . . . . . . . . . . 12 (𝑟 = 𝑓 → (𝑞𝑟𝑚𝑞𝑓𝑚))
7271ralbidv 2477 . . . . . . . . . . 11 (𝑟 = 𝑓 → (∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))
7372rexbidv 2478 . . . . . . . . . 10 (𝑟 = 𝑓 → (∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))
7470, 73imbi12d 234 . . . . . . . . 9 (𝑟 = 𝑓 → ((∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚) ↔ (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)))
7567, 74imbi12d 234 . . . . . . . 8 (𝑟 = 𝑓 → ((𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ↔ (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))))
7675spcgv 2824 . . . . . . 7 (𝑓 ∈ V → (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))))
7765, 66, 76mpsyl 65 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)))
7848, 63, 77mp2d 47 . . . . 5 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)
798, 40, 78r19.29af 2618 . . . 4 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ⊥)
8079inegd 1372 . . 3 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ 𝑓:ω–onto→𝒫 1o)
8180nexdv 1936 . 2 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→𝒫 1o)
82 elex2 2753 . . 3 (∅ ∈ 𝒫 1o → ∃𝑤 𝑤 ∈ 𝒫 1o)
83 ctm 7102 . . 3 (∃𝑤 𝑤 ∈ 𝒫 1o → (∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o))
8411, 82, 83mp2b 8 . 2 (∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o)
8581, 84sylnibr 677 1 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wfal 1358  wex 1492  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  wss 3129  c0 3422  𝒫 cpw 3574   class class class wbr 4000  ωcom 4586   × cxp 4621  ccnv 4622   Fn wfn 5207  wf 5208  ontowfo 5210  cfv 5212  1oc1o 6404  cdju 7030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-2nd 6136  df-1o 6411  df-dju 7031  df-inl 7040  df-inr 7041  df-case 7077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator