Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1nct GIF version

Theorem pw1nct 13717
Description: A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
Assertion
Ref Expression
pw1nct (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
Distinct variable groups:   𝑓,𝑚,𝑛,𝑝,𝑟   𝑓,𝑞,𝑚,𝑟

Proof of Theorem pw1nct
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1515 . . . . . . . 8 𝑚 𝑟 ⊆ (𝒫 1o × ω)
2 nfv 1515 . . . . . . . . 9 𝑚𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛
3 nfre1 2507 . . . . . . . . 9 𝑚𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚
42, 3nfim 1559 . . . . . . . 8 𝑚(∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)
51, 4nfim 1559 . . . . . . 7 𝑚(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚))
65nfal 1563 . . . . . 6 𝑚𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚))
7 nfv 1515 . . . . . 6 𝑚 𝑓:ω–onto→𝒫 1o
86, 7nfan 1552 . . . . 5 𝑚(∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o)
9 breq1 3979 . . . . . . . . 9 (𝑞 = ∅ → (𝑞𝑓𝑚 ↔ ∅𝑓𝑚))
10 simpr 109 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)
11 0elpw 4137 . . . . . . . . . 10 ∅ ∈ 𝒫 1o
1211a1i 9 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∅ ∈ 𝒫 1o)
139, 10, 12rspcdva 2830 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ∅𝑓𝑚)
14 0ex 4103 . . . . . . . . 9 ∅ ∈ V
15 vex 2724 . . . . . . . . 9 𝑚 ∈ V
1614, 15brcnv 4781 . . . . . . . 8 (∅𝑓𝑚𝑚𝑓∅)
1713, 16sylib 121 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚𝑓∅)
18 fofn 5406 . . . . . . . . 9 (𝑓:ω–onto→𝒫 1o𝑓 Fn ω)
1918ad3antlr 485 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑓 Fn ω)
20 simplr 520 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚 ∈ ω)
21 fnbrfvb 5521 . . . . . . . 8 ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓𝑚) = ∅ ↔ 𝑚𝑓∅))
2219, 20, 21syl2anc 409 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ((𝑓𝑚) = ∅ ↔ 𝑚𝑓∅))
2317, 22mpbird 166 . . . . . 6 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → (𝑓𝑚) = ∅)
24 breq1 3979 . . . . . . . . . 10 (𝑞 = 1o → (𝑞𝑓𝑚 ↔ 1o𝑓𝑚))
25 1oex 6383 . . . . . . . . . . . 12 1o ∈ V
2625pwid 3568 . . . . . . . . . . 11 1o ∈ 𝒫 1o
2726a1i 9 . . . . . . . . . 10 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 1o ∈ 𝒫 1o)
2824, 10, 27rspcdva 2830 . . . . . . . . 9 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 1o𝑓𝑚)
2925, 15brcnv 4781 . . . . . . . . 9 (1o𝑓𝑚𝑚𝑓1o)
3028, 29sylib 121 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → 𝑚𝑓1o)
31 fnbrfvb 5521 . . . . . . . . 9 ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓𝑚) = 1o𝑚𝑓1o))
3219, 20, 31syl2anc 409 . . . . . . . 8 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ((𝑓𝑚) = 1o𝑚𝑓1o))
3330, 32mpbird 166 . . . . . . 7 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → (𝑓𝑚) = 1o)
34 1n0 6391 . . . . . . . 8 1o ≠ ∅
3534neii 2336 . . . . . . 7 ¬ 1o = ∅
36 eqeq1 2171 . . . . . . . . 9 ((𝑓𝑚) = 1o → ((𝑓𝑚) = ∅ ↔ 1o = ∅))
3736biimpd 143 . . . . . . . 8 ((𝑓𝑚) = 1o → ((𝑓𝑚) = ∅ → 1o = ∅))
3837con3dimp 625 . . . . . . 7 (((𝑓𝑚) = 1o ∧ ¬ 1o = ∅) → ¬ (𝑓𝑚) = ∅)
3933, 35, 38sylancl 410 . . . . . 6 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ¬ (𝑓𝑚) = ∅)
4023, 39pm2.21fal 1362 . . . . 5 ((((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚) → ⊥)
41 fof 5404 . . . . . . . 8 (𝑓:ω–onto→𝒫 1o𝑓:ω⟶𝒫 1o)
42 fssxp 5349 . . . . . . . . . 10 (𝑓:ω⟶𝒫 1o𝑓 ⊆ (ω × 𝒫 1o))
43 cnvss 4771 . . . . . . . . . 10 (𝑓 ⊆ (ω × 𝒫 1o) → 𝑓(ω × 𝒫 1o))
4442, 43syl 14 . . . . . . . . 9 (𝑓:ω⟶𝒫 1o𝑓(ω × 𝒫 1o))
45 cnvxp 5016 . . . . . . . . 9 (ω × 𝒫 1o) = (𝒫 1o × ω)
4644, 45sseqtrdi 3185 . . . . . . . 8 (𝑓:ω⟶𝒫 1o𝑓 ⊆ (𝒫 1o × ω))
4741, 46syl 14 . . . . . . 7 (𝑓:ω–onto→𝒫 1o𝑓 ⊆ (𝒫 1o × ω))
4847adantl 275 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → 𝑓 ⊆ (𝒫 1o × ω))
49 foelrn 5715 . . . . . . . . 9 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → ∃𝑛 ∈ ω 𝑝 = (𝑓𝑛))
5018ad2antrr 480 . . . . . . . . . . 11 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → 𝑓 Fn ω)
51 simpr 109 . . . . . . . . . . 11 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
52 eqcom 2166 . . . . . . . . . . . 12 ((𝑓𝑛) = 𝑝𝑝 = (𝑓𝑛))
53 fnbrfvb 5521 . . . . . . . . . . . . 13 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓𝑛) = 𝑝𝑛𝑓𝑝))
54 brcnvg 4779 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ 𝑛 ∈ V) → (𝑝𝑓𝑛𝑛𝑓𝑝))
5554elvd 2726 . . . . . . . . . . . . . 14 (𝑝 ∈ V → (𝑝𝑓𝑛𝑛𝑓𝑝))
5655elv 2725 . . . . . . . . . . . . 13 (𝑝𝑓𝑛𝑛𝑓𝑝)
5753, 56bitr4di 197 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓𝑛) = 𝑝𝑝𝑓𝑛))
5852, 57bitr3id 193 . . . . . . . . . . 11 ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → (𝑝 = (𝑓𝑛) ↔ 𝑝𝑓𝑛))
5950, 51, 58syl2anc 409 . . . . . . . . . 10 (((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) ∧ 𝑛 ∈ ω) → (𝑝 = (𝑓𝑛) ↔ 𝑝𝑓𝑛))
6059rexbidva 2461 . . . . . . . . 9 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → (∃𝑛 ∈ ω 𝑝 = (𝑓𝑛) ↔ ∃𝑛 ∈ ω 𝑝𝑓𝑛))
6149, 60mpbid 146 . . . . . . . 8 ((𝑓:ω–onto→𝒫 1o𝑝 ∈ 𝒫 1o) → ∃𝑛 ∈ ω 𝑝𝑓𝑛)
6261ralrimiva 2537 . . . . . . 7 (𝑓:ω–onto→𝒫 1o → ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛)
6362adantl 275 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛)
64 cnvexg 5135 . . . . . . . 8 (𝑓 ∈ V → 𝑓 ∈ V)
6564elv 2725 . . . . . . 7 𝑓 ∈ V
66 simpl 108 . . . . . . 7 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)))
67 sseq1 3160 . . . . . . . . 9 (𝑟 = 𝑓 → (𝑟 ⊆ (𝒫 1o × ω) ↔ 𝑓 ⊆ (𝒫 1o × ω)))
68 breq 3978 . . . . . . . . . . . 12 (𝑟 = 𝑓 → (𝑝𝑟𝑛𝑝𝑓𝑛))
6968rexbidv 2465 . . . . . . . . . . 11 (𝑟 = 𝑓 → (∃𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∃𝑛 ∈ ω 𝑝𝑓𝑛))
7069ralbidv 2464 . . . . . . . . . 10 (𝑟 = 𝑓 → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛))
71 breq 3978 . . . . . . . . . . . 12 (𝑟 = 𝑓 → (𝑞𝑟𝑚𝑞𝑓𝑚))
7271ralbidv 2464 . . . . . . . . . . 11 (𝑟 = 𝑓 → (∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))
7372rexbidv 2465 . . . . . . . . . 10 (𝑟 = 𝑓 → (∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))
7470, 73imbi12d 233 . . . . . . . . 9 (𝑟 = 𝑓 → ((∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚) ↔ (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)))
7567, 74imbi12d 233 . . . . . . . 8 (𝑟 = 𝑓 → ((𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ↔ (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))))
7675spcgv 2808 . . . . . . 7 (𝑓 ∈ V → (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚))))
7765, 66, 76mpsyl 65 . . . . . 6 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → (𝑓 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)))
7848, 63, 77mp2d 47 . . . . 5 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑓𝑚)
798, 40, 78r19.29af 2605 . . . 4 ((∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ⊥)
8079inegd 1361 . . 3 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ 𝑓:ω–onto→𝒫 1o)
8180nexdv 1923 . 2 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→𝒫 1o)
82 elex2 2737 . . 3 (∅ ∈ 𝒫 1o → ∃𝑤 𝑤 ∈ 𝒫 1o)
83 ctm 7065 . . 3 (∃𝑤 𝑤 ∈ 𝒫 1o → (∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o))
8411, 82, 83mp2b 8 . 2 (∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o)
8581, 84sylnibr 667 1 (∀𝑟(𝑟 ⊆ (𝒫 1o × ω) → (∀𝑝 ∈ 𝒫 1o𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1340   = wceq 1342  wfal 1347  wex 1479  wcel 2135  wral 2442  wrex 2443  Vcvv 2721  wss 3111  c0 3404  𝒫 cpw 3553   class class class wbr 3976  ωcom 4561   × cxp 4596  ccnv 4597   Fn wfn 5177  wf 5178  ontowfo 5180  cfv 5182  1oc1o 6368  cdju 6993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1st 6100  df-2nd 6101  df-1o 6375  df-dju 6994  df-inl 7003  df-inr 7004  df-case 7040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator