| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑚 𝑟 ⊆ (𝒫
1o × ω) | 
| 2 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑚∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 | 
| 3 |   | nfre1 2540 | 
. . . . . . . . 9
⊢
Ⅎ𝑚∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫
1o𝑞𝑟𝑚 | 
| 4 | 2, 3 | nfim 1586 | 
. . . . . . . 8
⊢
Ⅎ𝑚(∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚) | 
| 5 | 1, 4 | nfim 1586 | 
. . . . . . 7
⊢
Ⅎ𝑚(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) | 
| 6 | 5 | nfal 1590 | 
. . . . . 6
⊢
Ⅎ𝑚∀𝑟(𝑟 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) | 
| 7 |   | nfv 1542 | 
. . . . . 6
⊢
Ⅎ𝑚 𝑓:ω–onto→𝒫 1o | 
| 8 | 6, 7 | nfan 1579 | 
. . . . 5
⊢
Ⅎ𝑚(∀𝑟(𝑟 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) | 
| 9 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑞 = ∅ → (𝑞◡𝑓𝑚 ↔ ∅◡𝑓𝑚)) | 
| 10 |   | simpr 110 | 
. . . . . . . . 9
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚) | 
| 11 |   | 0elpw 4197 | 
. . . . . . . . . 10
⊢ ∅
∈ 𝒫 1o | 
| 12 | 11 | a1i 9 | 
. . . . . . . . 9
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ∅ ∈ 𝒫
1o) | 
| 13 | 9, 10, 12 | rspcdva 2873 | 
. . . . . . . 8
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ∅◡𝑓𝑚) | 
| 14 |   | 0ex 4160 | 
. . . . . . . . 9
⊢ ∅
∈ V | 
| 15 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑚 ∈ V | 
| 16 | 14, 15 | brcnv 4849 | 
. . . . . . . 8
⊢
(∅◡𝑓𝑚 ↔ 𝑚𝑓∅) | 
| 17 | 13, 16 | sylib 122 | 
. . . . . . 7
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 𝑚𝑓∅) | 
| 18 |   | fofn 5482 | 
. . . . . . . . 9
⊢ (𝑓:ω–onto→𝒫 1o → 𝑓 Fn ω) | 
| 19 | 18 | ad3antlr 493 | 
. . . . . . . 8
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 𝑓 Fn ω) | 
| 20 |   | simplr 528 | 
. . . . . . . 8
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 𝑚 ∈ ω) | 
| 21 |   | fnbrfvb 5601 | 
. . . . . . . 8
⊢ ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓‘𝑚) = ∅ ↔ 𝑚𝑓∅)) | 
| 22 | 19, 20, 21 | syl2anc 411 | 
. . . . . . 7
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ((𝑓‘𝑚) = ∅ ↔ 𝑚𝑓∅)) | 
| 23 | 17, 22 | mpbird 167 | 
. . . . . 6
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → (𝑓‘𝑚) = ∅) | 
| 24 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑞 = 1o → (𝑞◡𝑓𝑚 ↔ 1o◡𝑓𝑚)) | 
| 25 |   | 1oex 6482 | 
. . . . . . . . . . . 12
⊢
1o ∈ V | 
| 26 | 25 | pwid 3620 | 
. . . . . . . . . . 11
⊢
1o ∈ 𝒫 1o | 
| 27 | 26 | a1i 9 | 
. . . . . . . . . 10
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 1o ∈ 𝒫
1o) | 
| 28 | 24, 10, 27 | rspcdva 2873 | 
. . . . . . . . 9
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 1o◡𝑓𝑚) | 
| 29 | 25, 15 | brcnv 4849 | 
. . . . . . . . 9
⊢
(1o◡𝑓𝑚 ↔ 𝑚𝑓1o) | 
| 30 | 28, 29 | sylib 122 | 
. . . . . . . 8
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → 𝑚𝑓1o) | 
| 31 |   | fnbrfvb 5601 | 
. . . . . . . . 9
⊢ ((𝑓 Fn ω ∧ 𝑚 ∈ ω) → ((𝑓‘𝑚) = 1o ↔ 𝑚𝑓1o)) | 
| 32 | 19, 20, 31 | syl2anc 411 | 
. . . . . . . 8
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ((𝑓‘𝑚) = 1o ↔ 𝑚𝑓1o)) | 
| 33 | 30, 32 | mpbird 167 | 
. . . . . . 7
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → (𝑓‘𝑚) = 1o) | 
| 34 |   | 1n0 6490 | 
. . . . . . . 8
⊢
1o ≠ ∅ | 
| 35 | 34 | neii 2369 | 
. . . . . . 7
⊢  ¬
1o = ∅ | 
| 36 |   | eqeq1 2203 | 
. . . . . . . . 9
⊢ ((𝑓‘𝑚) = 1o → ((𝑓‘𝑚) = ∅ ↔ 1o =
∅)) | 
| 37 | 36 | biimpd 144 | 
. . . . . . . 8
⊢ ((𝑓‘𝑚) = 1o → ((𝑓‘𝑚) = ∅ → 1o =
∅)) | 
| 38 | 37 | con3dimp 636 | 
. . . . . . 7
⊢ (((𝑓‘𝑚) = 1o ∧ ¬ 1o =
∅) → ¬ (𝑓‘𝑚) = ∅) | 
| 39 | 33, 35, 38 | sylancl 413 | 
. . . . . 6
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ¬ (𝑓‘𝑚) = ∅) | 
| 40 | 23, 39 | pm2.21fal 1384 | 
. . . . 5
⊢
((((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) ∧ 𝑚 ∈ ω) ∧
∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) → ⊥) | 
| 41 |   | fof 5480 | 
. . . . . . . 8
⊢ (𝑓:ω–onto→𝒫 1o → 𝑓:ω⟶𝒫
1o) | 
| 42 |   | fssxp 5425 | 
. . . . . . . . . 10
⊢ (𝑓:ω⟶𝒫
1o → 𝑓
⊆ (ω × 𝒫 1o)) | 
| 43 |   | cnvss 4839 | 
. . . . . . . . . 10
⊢ (𝑓 ⊆ (ω ×
𝒫 1o) → ◡𝑓 ⊆ ◡(ω × 𝒫
1o)) | 
| 44 | 42, 43 | syl 14 | 
. . . . . . . . 9
⊢ (𝑓:ω⟶𝒫
1o → ◡𝑓 ⊆ ◡(ω × 𝒫
1o)) | 
| 45 |   | cnvxp 5088 | 
. . . . . . . . 9
⊢ ◡(ω × 𝒫 1o) =
(𝒫 1o × ω) | 
| 46 | 44, 45 | sseqtrdi 3231 | 
. . . . . . . 8
⊢ (𝑓:ω⟶𝒫
1o → ◡𝑓 ⊆ (𝒫
1o × ω)) | 
| 47 | 41, 46 | syl 14 | 
. . . . . . 7
⊢ (𝑓:ω–onto→𝒫 1o → ◡𝑓 ⊆ (𝒫 1o ×
ω)) | 
| 48 | 47 | adantl 277 | 
. . . . . 6
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ◡𝑓 ⊆ (𝒫 1o ×
ω)) | 
| 49 |   | foelrn 5799 | 
. . . . . . . . 9
⊢ ((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
→ ∃𝑛 ∈
ω 𝑝 = (𝑓‘𝑛)) | 
| 50 | 18 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
∧ 𝑛 ∈ ω)
→ 𝑓 Fn
ω) | 
| 51 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
∧ 𝑛 ∈ ω)
→ 𝑛 ∈
ω) | 
| 52 |   | eqcom 2198 | 
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑛) = 𝑝 ↔ 𝑝 = (𝑓‘𝑛)) | 
| 53 |   | fnbrfvb 5601 | 
. . . . . . . . . . . . 13
⊢ ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓‘𝑛) = 𝑝 ↔ 𝑛𝑓𝑝)) | 
| 54 |   | brcnvg 4847 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ V ∧ 𝑛 ∈ V) → (𝑝◡𝑓𝑛 ↔ 𝑛𝑓𝑝)) | 
| 55 | 54 | elvd 2768 | 
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ V → (𝑝◡𝑓𝑛 ↔ 𝑛𝑓𝑝)) | 
| 56 | 55 | elv 2767 | 
. . . . . . . . . . . . 13
⊢ (𝑝◡𝑓𝑛 ↔ 𝑛𝑓𝑝) | 
| 57 | 53, 56 | bitr4di 198 | 
. . . . . . . . . . . 12
⊢ ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → ((𝑓‘𝑛) = 𝑝 ↔ 𝑝◡𝑓𝑛)) | 
| 58 | 52, 57 | bitr3id 194 | 
. . . . . . . . . . 11
⊢ ((𝑓 Fn ω ∧ 𝑛 ∈ ω) → (𝑝 = (𝑓‘𝑛) ↔ 𝑝◡𝑓𝑛)) | 
| 59 | 50, 51, 58 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
∧ 𝑛 ∈ ω)
→ (𝑝 = (𝑓‘𝑛) ↔ 𝑝◡𝑓𝑛)) | 
| 60 | 59 | rexbidva 2494 | 
. . . . . . . . 9
⊢ ((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
→ (∃𝑛 ∈
ω 𝑝 = (𝑓‘𝑛) ↔ ∃𝑛 ∈ ω 𝑝◡𝑓𝑛)) | 
| 61 | 49, 60 | mpbid 147 | 
. . . . . . . 8
⊢ ((𝑓:ω–onto→𝒫 1o ∧ 𝑝 ∈ 𝒫 1o)
→ ∃𝑛 ∈
ω 𝑝◡𝑓𝑛) | 
| 62 | 61 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝑓:ω–onto→𝒫 1o → ∀𝑝 ∈ 𝒫
1o∃𝑛
∈ ω 𝑝◡𝑓𝑛) | 
| 63 | 62 | adantl 277 | 
. . . . . 6
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑝 ∈ 𝒫
1o∃𝑛
∈ ω 𝑝◡𝑓𝑛) | 
| 64 |   | cnvexg 5207 | 
. . . . . . . 8
⊢ (𝑓 ∈ V → ◡𝑓 ∈ V) | 
| 65 | 64 | elv 2767 | 
. . . . . . 7
⊢ ◡𝑓 ∈ V | 
| 66 |   | simpl 109 | 
. . . . . . 7
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∀𝑟(𝑟 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚))) | 
| 67 |   | sseq1 3206 | 
. . . . . . . . 9
⊢ (𝑟 = ◡𝑓 → (𝑟 ⊆ (𝒫 1o ×
ω) ↔ ◡𝑓 ⊆ (𝒫 1o ×
ω))) | 
| 68 |   | breq 4035 | 
. . . . . . . . . . . 12
⊢ (𝑟 = ◡𝑓 → (𝑝𝑟𝑛 ↔ 𝑝◡𝑓𝑛)) | 
| 69 | 68 | rexbidv 2498 | 
. . . . . . . . . . 11
⊢ (𝑟 = ◡𝑓 → (∃𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∃𝑛 ∈ ω 𝑝◡𝑓𝑛)) | 
| 70 | 69 | ralbidv 2497 | 
. . . . . . . . . 10
⊢ (𝑟 = ◡𝑓 → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 ↔ ∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝◡𝑓𝑛)) | 
| 71 |   | breq 4035 | 
. . . . . . . . . . . 12
⊢ (𝑟 = ◡𝑓 → (𝑞𝑟𝑚 ↔ 𝑞◡𝑓𝑚)) | 
| 72 | 71 | ralbidv 2497 | 
. . . . . . . . . . 11
⊢ (𝑟 = ◡𝑓 → (∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚)) | 
| 73 | 72 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑟 = ◡𝑓 → (∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚 ↔ ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚)) | 
| 74 | 70, 73 | imbi12d 234 | 
. . . . . . . . 9
⊢ (𝑟 = ◡𝑓 → ((∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚) ↔ (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝◡𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚))) | 
| 75 | 67, 74 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑟 = ◡𝑓 → ((𝑟 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ↔ (◡𝑓 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝◡𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚)))) | 
| 76 | 75 | spcgv 2851 | 
. . . . . . 7
⊢ (◡𝑓 ∈ V → (∀𝑟(𝑟 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → (◡𝑓 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝◡𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚)))) | 
| 77 | 65, 66, 76 | mpsyl 65 | 
. . . . . 6
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → (◡𝑓 ⊆ (𝒫 1o ×
ω) → (∀𝑝
∈ 𝒫 1o∃𝑛 ∈ ω 𝑝◡𝑓𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞◡𝑓𝑚))) | 
| 78 | 48, 63, 77 | mp2d 47 | 
. . . . 5
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫
1o𝑞◡𝑓𝑚) | 
| 79 | 8, 40, 78 | r19.29af 2638 | 
. . . 4
⊢
((∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) ∧ 𝑓:ω–onto→𝒫 1o) →
⊥) | 
| 80 | 79 | inegd 1383 | 
. . 3
⊢
(∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ 𝑓:ω–onto→𝒫 1o) | 
| 81 | 80 | nexdv 1955 | 
. 2
⊢
(∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→𝒫 1o) | 
| 82 |   | elex2 2779 | 
. . 3
⊢ (∅
∈ 𝒫 1o → ∃𝑤 𝑤 ∈ 𝒫
1o) | 
| 83 |   | ctm 7175 | 
. . 3
⊢
(∃𝑤 𝑤 ∈ 𝒫 1o
→ (∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔
1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o)) | 
| 84 | 11, 82, 83 | mp2b 8 | 
. 2
⊢
(∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔
1o) ↔ ∃𝑓 𝑓:ω–onto→𝒫 1o) | 
| 85 | 81, 84 | sylnibr 678 | 
1
⊢
(∀𝑟(𝑟 ⊆ (𝒫
1o × ω) → (∀𝑝 ∈ 𝒫 1o∃𝑛 ∈ ω 𝑝𝑟𝑛 → ∃𝑚 ∈ ω ∀𝑞 ∈ 𝒫 1o𝑞𝑟𝑚)) → ¬ ∃𝑓 𝑓:ω–onto→(𝒫 1o ⊔
1o)) |