| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ee8anv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| ee8anv | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ∧ ∃𝑣∃𝑢∃𝑡∃𝑠𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exrot4 1715 | . . 3 ⊢ (∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ ∃𝑣∃𝑢∃𝑧∃𝑤∃𝑡∃𝑠(𝜑 ∧ 𝜓)) | |
| 2 | 1 | 2exbii 1630 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦∃𝑣∃𝑢∃𝑧∃𝑤∃𝑡∃𝑠(𝜑 ∧ 𝜓)) |
| 3 | ee4anv 1963 | . . . 4 ⊢ (∃𝑧∃𝑤∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ (∃𝑧∃𝑤𝜑 ∧ ∃𝑡∃𝑠𝜓)) | |
| 4 | 3 | 2exbii 1630 | . . 3 ⊢ (∃𝑣∃𝑢∃𝑧∃𝑤∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ ∃𝑣∃𝑢(∃𝑧∃𝑤𝜑 ∧ ∃𝑡∃𝑠𝜓)) |
| 5 | 4 | 2exbii 1630 | . 2 ⊢ (∃𝑥∃𝑦∃𝑣∃𝑢∃𝑧∃𝑤∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦∃𝑣∃𝑢(∃𝑧∃𝑤𝜑 ∧ ∃𝑡∃𝑠𝜓)) |
| 6 | ee4anv 1963 | . 2 ⊢ (∃𝑥∃𝑦∃𝑣∃𝑢(∃𝑧∃𝑤𝜑 ∧ ∃𝑡∃𝑠𝜓) ↔ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ∧ ∃𝑣∃𝑢∃𝑡∃𝑠𝜓)) | |
| 7 | 2, 5, 6 | 3bitri 206 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ∧ ∃𝑣∃𝑢∃𝑡∃𝑠𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: enq0tr 7582 |
| Copyright terms: Public domain | W3C validator |