| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1542 |
. 2
⊢
Ⅎ𝑧𝜑 |
| 2 | | df-clab 2183 |
. . 3
⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) |
| 3 | | nfabdw.1 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
| 4 | | nfabdw.2 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 5 | 3, 4 | alrimi 1536 |
. . . 4
⊢ (𝜑 → ∀𝑦Ⅎ𝑥𝜓) |
| 6 | | nfa1 1555 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦Ⅎ𝑥𝜓 |
| 7 | | sb6 1901 |
. . . . . . . . . . . 12
⊢ ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓)) |
| 8 | 7 | a1i 9 |
. . . . . . . . . . 11
⊢
(∀𝑦Ⅎ𝑥𝜓 → ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓))) |
| 9 | 7 | biimpri 133 |
. . . . . . . . . . . 12
⊢
(∀𝑦(𝑦 = 𝑧 → 𝜓) → [𝑧 / 𝑦]𝜓) |
| 10 | 9 | axc4i 1556 |
. . . . . . . . . . 11
⊢
(∀𝑦(𝑦 = 𝑧 → 𝜓) → ∀𝑦[𝑧 / 𝑦]𝜓) |
| 11 | 8, 10 | biimtrdi 163 |
. . . . . . . . . 10
⊢
(∀𝑦Ⅎ𝑥𝜓 → ([𝑧 / 𝑦]𝜓 → ∀𝑦[𝑧 / 𝑦]𝜓)) |
| 12 | 6, 11 | nf5d 2044 |
. . . . . . . . 9
⊢
(∀𝑦Ⅎ𝑥𝜓 → Ⅎ𝑦[𝑧 / 𝑦]𝜓) |
| 13 | 6, 12 | nfim1 1585 |
. . . . . . . 8
⊢
Ⅎ𝑦(∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓) |
| 14 | | sbequ12 1785 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑦]𝜓)) |
| 15 | 14 | imbi2d 230 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((∀𝑦Ⅎ𝑥𝜓 → 𝜓) ↔ (∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓))) |
| 16 | 13, 15 | equsalv 1807 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑧 → (∀𝑦Ⅎ𝑥𝜓 → 𝜓)) ↔ (∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓)) |
| 17 | 16 | bicomi 132 |
. . . . . 6
⊢
((∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓) ↔ ∀𝑦(𝑦 = 𝑧 → (∀𝑦Ⅎ𝑥𝜓 → 𝜓))) |
| 18 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = 𝑧 |
| 19 | | nfnf1 1558 |
. . . . . . . . . 10
⊢
Ⅎ𝑥Ⅎ𝑥𝜓 |
| 20 | 19 | nfal 1590 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦Ⅎ𝑥𝜓 |
| 21 | | sp 1525 |
. . . . . . . . 9
⊢
(∀𝑦Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓) |
| 22 | 20, 21 | nfim1 1585 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜓 → 𝜓) |
| 23 | 18, 22 | nfim 1586 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑦 = 𝑧 → (∀𝑦Ⅎ𝑥𝜓 → 𝜓)) |
| 24 | 23 | nfal 1590 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑦(𝑦 = 𝑧 → (∀𝑦Ⅎ𝑥𝜓 → 𝜓)) |
| 25 | 17, 24 | nfxfr 1488 |
. . . . 5
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓) |
| 26 | | pm5.5 242 |
. . . . . 6
⊢
(∀𝑦Ⅎ𝑥𝜓 → ((∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓) ↔ [𝑧 / 𝑦]𝜓)) |
| 27 | 20, 26 | nfbidf 1553 |
. . . . 5
⊢
(∀𝑦Ⅎ𝑥𝜓 → (Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜓 → [𝑧 / 𝑦]𝜓) ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜓)) |
| 28 | 25, 27 | mpbii 148 |
. . . 4
⊢
(∀𝑦Ⅎ𝑥𝜓 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 29 | 5, 28 | syl 14 |
. . 3
⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 30 | 2, 29 | nfxfrd 1489 |
. 2
⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 31 | 1, 30 | nfcd 2334 |
1
⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |