| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbtt | GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbtt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3102 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | nfcr 2342 | . . . 4 ⊢ (Ⅎ𝑥𝐵 → Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 3 | sbctt 3072 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥 𝑦 ∈ 𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 4 | 2, 3 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 5 | 4 | abbi1dv 2327 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐵) |
| 6 | 1, 5 | eqtrid 2252 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 {cab 2193 Ⅎwnfc 2337 [wsbc 3005 ⦋csb 3101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sbc 3006 df-csb 3102 |
| This theorem is referenced by: csbconstgf 3114 sbnfc2 3162 |
| Copyright terms: Public domain | W3C validator |