| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbtt | GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbtt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3125 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | nfcr 2364 | . . . 4 ⊢ (Ⅎ𝑥𝐵 → Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 3 | sbctt 3095 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥 𝑦 ∈ 𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 4 | 2, 3 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 5 | 4 | abbi1dv 2349 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐵) |
| 6 | 1, 5 | eqtrid 2274 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 [wsbc 3028 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbconstgf 3137 sbnfc2 3185 |
| Copyright terms: Public domain | W3C validator |