ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnestgf GIF version

Theorem csbnestgf 3148
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)

Proof of Theorem csbnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2785 . . 3 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3096 . . . . . . 7 𝐵 / 𝑦𝐶 = {𝑧[𝐵 / 𝑦]𝑧𝐶}
32abeq2i 2317 . . . . . 6 (𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐶)
43sbcbii 3060 . . . . 5 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶)
5 nfcr 2341 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥 𝑧𝐶)
65alimi 1479 . . . . . 6 (∀𝑦𝑥𝐶 → ∀𝑦𝑥 𝑧𝐶)
7 sbcnestgf 3147 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦𝑥 𝑧𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
86, 7sylan2 286 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
94, 8bitrid 192 . . . 4 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
109abbidv 2324 . . 3 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
111, 10sylan 283 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
12 df-csb 3096 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶}
13 df-csb 3096 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶}
1411, 12, 133eqtr4g 2264 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wnf 1484  wcel 2177  {cab 2192  wnfc 2336  Vcvv 2773  [wsbc 3000  csb 3095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3001  df-csb 3096
This theorem is referenced by:  csbnestg  3150  csbnest1g  3151
  Copyright terms: Public domain W3C validator