Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbnestgf | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
Ref | Expression |
---|---|
csbnestgf | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3046 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
3 | 2 | abeq2i 2277 | . . . . . 6 ⊢ (𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ 𝐶) |
4 | 3 | sbcbii 3010 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶) |
5 | nfcr 2300 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐶 → Ⅎ𝑥 𝑧 ∈ 𝐶) | |
6 | 5 | alimi 1443 | . . . . . 6 ⊢ (∀𝑦Ⅎ𝑥𝐶 → ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) |
7 | sbcnestgf 3096 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) | |
8 | 6, 7 | sylan2 284 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
9 | 4, 8 | syl5bb 191 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
10 | 9 | abbidv 2284 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
11 | 1, 10 | sylan 281 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
12 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} | |
13 | df-csb 3046 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
14 | 11, 12, 13 | 3eqtr4g 2224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 Vcvv 2726 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: csbnestg 3099 csbnest1g 3100 |
Copyright terms: Public domain | W3C validator |