| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcrd | GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | nfcr 2364 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nfc 2361 |
| This theorem is referenced by: nfeqd 2387 nfeld 2388 dvelimdc 2393 nfcsbd 3160 nfcsbw 3161 nfifd 3630 |
| Copyright terms: Public domain | W3C validator |