ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcrii GIF version

Theorem nfcrii 2365
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4 𝑥𝐴
2 nfcr 2364 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
31, 2ax-mp 5 . . 3 𝑥 𝑧𝐴
43nfri 1565 . 2 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
54hblem 2337 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wnf 1506  wcel 2200  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfcri  2366
  Copyright terms: Public domain W3C validator