ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcrii GIF version

Theorem nfcrii 2222
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4 𝑥𝐴
2 nfcr 2221 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
31, 2ax-mp 7 . . 3 𝑥 𝑧𝐴
43nfri 1458 . 2 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
54hblem 2196 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1288  wnf 1395  wcel 1439  wnfc 2216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218
This theorem is referenced by:  nfcri  2223
  Copyright terms: Public domain W3C validator