| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfd | GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| nfd.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | 
| Ref | Expression | 
|---|---|
| nfd | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 3 | nfd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 4 | 2, 3 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) | 
| 5 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: nfdh 1538 nfrimi 1539 nfnt 1670 cbv1h 1760 nfald 1774 a16nf 1880 dvelimALT 2029 dvelimfv 2030 nfsb4t 2033 hbeud 2067 | 
| Copyright terms: Public domain | W3C validator |