ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfd GIF version

Theorem nfd 1511
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfd.1 𝑥𝜑
nfd.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
nfd (𝜑 → Ⅎ𝑥𝜓)

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . . . 4 𝑥𝜑
21nfri 1507 . . 3 (𝜑 → ∀𝑥𝜑)
3 nfd.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
42, 3alrimih 1457 . 2 (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓))
5 df-nf 1449 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
64, 5sylibr 133 1 (𝜑 → Ⅎ𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfdh  1512  nfrimi  1513  nfnt  1644  cbv1h  1734  nfald  1748  a16nf  1854  dvelimALT  1998  dvelimfv  1999  nfsb4t  2002  hbeud  2036
  Copyright terms: Public domain W3C validator