ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfd GIF version

Theorem nfd 1569
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfd.1 𝑥𝜑
nfd.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
nfd (𝜑 → Ⅎ𝑥𝜓)

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . . . 4 𝑥𝜑
21nfri 1565 . . 3 (𝜑 → ∀𝑥𝜑)
3 nfd.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
42, 3alrimih 1515 . 2 (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓))
5 df-nf 1507 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
64, 5sylibr 134 1 (𝜑 → Ⅎ𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nfdh  1570  nfrimi  1571  nfnt  1702  cbv1h  1792  nfald  1806  a16nf  1912  dvelimALT  2061  dvelimfv  2062  nfsb4t  2065  hbeud  2099
  Copyright terms: Public domain W3C validator