Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfd | GIF version |
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfd.1 | ⊢ Ⅎ𝑥𝜑 |
nfd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nfd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1507 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nfd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
4 | 2, 3 | alrimih 1457 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
5 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfdh 1512 nfrimi 1513 nfnt 1644 cbv1h 1734 nfald 1748 a16nf 1854 dvelimALT 1998 dvelimfv 1999 nfsb4t 2002 hbeud 2036 |
Copyright terms: Public domain | W3C validator |