![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfd | GIF version |
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfd.1 | ⊢ Ⅎ𝑥𝜑 |
nfd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nfd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1519 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nfd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
4 | 2, 3 | alrimih 1469 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
5 | df-nf 1461 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
6 | 4, 5 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfdh 1524 nfrimi 1525 nfnt 1656 cbv1h 1746 nfald 1760 a16nf 1866 dvelimALT 2010 dvelimfv 2011 nfsb4t 2014 hbeud 2048 |
Copyright terms: Public domain | W3C validator |