| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfd | GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| nfd | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 4 | 2, 3 | alrimih 1493 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 5 | df-nf 1485 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfdh 1548 nfrimi 1549 nfnt 1680 cbv1h 1770 nfald 1784 a16nf 1890 dvelimALT 2039 dvelimfv 2040 nfsb4t 2043 hbeud 2077 |
| Copyright terms: Public domain | W3C validator |