![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbsbd | GIF version |
Description: Deduction version of hbsb 1949. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
Ref | Expression |
---|---|
hbsbd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbsbd.2 | ⊢ (𝜑 → ∀𝑧𝜑) |
hbsbd.3 | ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) |
Ref | Expression |
---|---|
hbsbd | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsbd.2 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | nfi 1462 | . . 3 ⊢ Ⅎ𝑧𝜑 |
3 | hbsbd.3 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) | |
4 | 1, 3 | nfdh 1524 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝜓) |
5 | 2, 4 | nfim1 1571 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 → 𝜓) |
6 | 5 | nfsb 1946 | . . . 4 ⊢ Ⅎ𝑧[𝑦 / 𝑥](𝜑 → 𝜓) |
7 | hbsbd.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑥𝜑) | |
8 | 7 | sbrim 1956 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
9 | 8 | nfbii 1473 | . . . 4 ⊢ (Ⅎ𝑧[𝑦 / 𝑥](𝜑 → 𝜓) ↔ Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜓)) |
10 | 6, 9 | mpbi 145 | . . 3 ⊢ Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜓) |
11 | 2, 10 | nfrimi 1525 | . 2 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
12 | 11 | nfrd 1520 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |