| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsbd | GIF version | ||
| Description: Deduction version of hbsb 1968. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| hbsbd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbsbd.2 | ⊢ (𝜑 → ∀𝑧𝜑) |
| hbsbd.3 | ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) |
| Ref | Expression |
|---|---|
| hbsbd | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbsbd.2 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | 1 | nfi 1476 | . . 3 ⊢ Ⅎ𝑧𝜑 |
| 3 | hbsbd.3 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓)) | |
| 4 | 1, 3 | nfdh 1538 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| 5 | 2, 4 | nfim1 1585 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 → 𝜓) |
| 6 | 5 | nfsb 1965 | . . . 4 ⊢ Ⅎ𝑧[𝑦 / 𝑥](𝜑 → 𝜓) |
| 7 | hbsbd.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 8 | 7 | sbrim 1975 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 9 | 8 | nfbii 1487 | . . . 4 ⊢ (Ⅎ𝑧[𝑦 / 𝑥](𝜑 → 𝜓) ↔ Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜓)) |
| 10 | 6, 9 | mpbi 145 | . . 3 ⊢ Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜓) |
| 11 | 2, 10 | nfrimi 1539 | . 2 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| 12 | 11 | nfrd 1534 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |