ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neirr GIF version

Theorem neirr 2336
Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Assertion
Ref Expression
neirr ¬ 𝐴𝐴

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2157 . . 3 𝐴 = 𝐴
21notnoti 635 . 2 ¬ ¬ 𝐴 = 𝐴
3 df-ne 2328 . . 3 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
43notbii 658 . 2 𝐴𝐴 ↔ ¬ ¬ 𝐴 = 𝐴)
52, 4mpbir 145 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-gen 1429  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-ne 2328
This theorem is referenced by:  neldifsn  3691  0nnq  7286  1nuz2  9522
  Copyright terms: Public domain W3C validator