| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neirr | GIF version | ||
| Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | notnoti 648 | . 2 ⊢ ¬ ¬ 𝐴 = 𝐴 |
| 3 | df-ne 2381 | . . 3 ⊢ (𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴) | |
| 4 | 3 | notbii 672 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ ¬ ¬ 𝐴 = 𝐴) |
| 5 | 2, 4 | mpbir 146 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-gen 1475 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-ne 2381 |
| This theorem is referenced by: neldifsn 3777 netap 7408 2omotaplemap 7411 0nnq 7519 1nuz2 9769 umgrnloop0 15882 |
| Copyright terms: Public domain | W3C validator |