ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neirr GIF version

Theorem neirr 2389
Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Assertion
Ref Expression
neirr ¬ 𝐴𝐴

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2209 . . 3 𝐴 = 𝐴
21notnoti 648 . 2 ¬ ¬ 𝐴 = 𝐴
3 df-ne 2381 . . 3 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
43notbii 672 . 2 𝐴𝐴 ↔ ¬ ¬ 𝐴 = 𝐴)
52, 4mpbir 146 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1375  wne 2380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-gen 1475  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-cleq 2202  df-ne 2381
This theorem is referenced by:  neldifsn  3777  netap  7408  2omotaplemap  7411  0nnq  7519  1nuz2  9769  umgrnloop0  15882
  Copyright terms: Public domain W3C validator