ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 GIF version

Theorem dfnul2 3466
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3465 . . . 4 ∅ = (V ∖ V)
21eleq2i 2273 . . 3 (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V))
3 eldif 3179 . . 3 (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V))
4 pm3.24 695 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
5 eqid 2206 . . . . 5 𝑥 = 𝑥
65notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
74, 62false 703 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥)
82, 3, 73bitri 206 . 2 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
98abbi2i 2321 1 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cdif 3167  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-nul 3465
This theorem is referenced by:  dfnul3  3467  rab0  3493  iotanul  5261
  Copyright terms: Public domain W3C validator