ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 GIF version

Theorem dfnul2 3493
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3492 . . . 4 ∅ = (V ∖ V)
21eleq2i 2296 . . 3 (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V))
3 eldif 3206 . . 3 (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V))
4 pm3.24 698 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
5 eqid 2229 . . . . 5 𝑥 = 𝑥
65notnoti 648 . . . 4 ¬ ¬ 𝑥 = 𝑥
74, 62false 706 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥)
82, 3, 73bitri 206 . 2 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
98abbi2i 2344 1 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  cdif 3194  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  dfnul3  3494  rab0  3520  iotanul  5293
  Copyright terms: Public domain W3C validator