Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnul2 | GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 3415 | . . . 4 ⊢ ∅ = (V ∖ V) | |
2 | 1 | eleq2i 2237 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V)) |
3 | eldif 3130 | . . 3 ⊢ (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)) | |
4 | pm3.24 688 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
5 | eqid 2170 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
6 | 5 | notnoti 640 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
7 | 4, 6 | 2false 696 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥) |
8 | 2, 3, 7 | 3bitri 205 | . 2 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
9 | 8 | abbi2i 2285 | 1 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 ∖ cdif 3118 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: dfnul3 3417 rab0 3443 iotanul 5175 |
Copyright terms: Public domain | W3C validator |