ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 GIF version

Theorem dfnul2 3452
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3451 . . . 4 ∅ = (V ∖ V)
21eleq2i 2263 . . 3 (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V))
3 eldif 3166 . . 3 (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V))
4 pm3.24 694 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
5 eqid 2196 . . . . 5 𝑥 = 𝑥
65notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
74, 62false 702 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥)
82, 3, 73bitri 206 . 2 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
98abbi2i 2311 1 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  cdif 3154  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  dfnul3  3453  rab0  3479  iotanul  5234
  Copyright terms: Public domain W3C validator