![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfnul2 | GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 3303 | . . . 4 ⊢ ∅ = (V ∖ V) | |
2 | 1 | eleq2i 2161 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V)) |
3 | eldif 3022 | . . 3 ⊢ (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)) | |
4 | pm3.24 665 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
5 | eqid 2095 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
6 | 5 | notnoti 612 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
7 | 4, 6 | 2false 655 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥) |
8 | 2, 3, 7 | 3bitri 205 | . 2 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
9 | 8 | abbi2i 2209 | 1 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1296 ∈ wcel 1445 {cab 2081 Vcvv 2633 ∖ cdif 3010 ∅c0 3302 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-nul 3303 |
This theorem is referenced by: dfnul3 3305 rab0 3330 iotanul 5029 |
Copyright terms: Public domain | W3C validator |