ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul3 GIF version

Theorem dfnul3 3463
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}

Proof of Theorem dfnul3
StepHypRef Expression
1 equid 1724 . . . . 5 𝑥 = 𝑥
21notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
3 pm3.24 695 . . . 4 ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴)
42, 32false 703 . . 3 𝑥 = 𝑥 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
54abbii 2321 . 2 {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
6 dfnul2 3462 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2493 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐴} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
85, 6, 73eqtr4i 2236 1 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wcel 2176  {cab 2191  {crab 2488  c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by:  difidALT  3530
  Copyright terms: Public domain W3C validator