| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnul3 | GIF version | ||
| Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1725 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 2 | 1 | notnoti 646 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
| 3 | pm3.24 695 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | 2false 703 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 5 | 4 | abbii 2323 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
| 6 | dfnul2 3470 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 7 | df-rab 2495 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2238 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∈ wcel 2178 {cab 2193 {crab 2490 ∅c0 3468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: difidALT 3538 |
| Copyright terms: Public domain | W3C validator |