ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul3 GIF version

Theorem dfnul3 3305
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}

Proof of Theorem dfnul3
StepHypRef Expression
1 equid 1641 . . . . 5 𝑥 = 𝑥
21notnoti 612 . . . 4 ¬ ¬ 𝑥 = 𝑥
3 pm3.24 665 . . . 4 ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴)
42, 32false 655 . . 3 𝑥 = 𝑥 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
54abbii 2210 . 2 {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
6 dfnul2 3304 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2379 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐴} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
85, 6, 73eqtr4i 2125 1 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1296  wcel 1445  {cab 2081  {crab 2374  c0 3302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rab 2379  df-v 2635  df-dif 3015  df-nul 3303
This theorem is referenced by:  difidALT  3371
  Copyright terms: Public domain W3C validator