ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul3 GIF version

Theorem dfnul3 3449
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfnul3 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}

Proof of Theorem dfnul3
StepHypRef Expression
1 equid 1712 . . . . 5 𝑥 = 𝑥
21notnoti 646 . . . 4 ¬ ¬ 𝑥 = 𝑥
3 pm3.24 694 . . . 4 ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴)
42, 32false 702 . . 3 𝑥 = 𝑥 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
54abbii 2309 . 2 {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
6 dfnul2 3448 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 2481 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐴} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
85, 6, 73eqtr4i 2224 1 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-nul 3447
This theorem is referenced by:  difidALT  3516
  Copyright terms: Public domain W3C validator