Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnul3 | GIF version |
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1689 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | 1 | notnoti 635 | . . . 4 ⊢ ¬ ¬ 𝑥 = 𝑥 |
3 | pm3.24 683 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | 2false 691 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
5 | 4 | abbii 2282 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
6 | dfnul2 3411 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
7 | df-rab 2453 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
8 | 5, 6, 7 | 3eqtr4i 2196 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 {crab 2448 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: difidALT 3478 |
Copyright terms: Public domain | W3C validator |